Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок

Английский физик Исаак Ньютон опубликовал книгу, в которой объяснил движение объектов и принцип действия гравитации. «Математические начала натуральной философии» подарили вещам в мире установленные места. История гласит, что в возрасте 23 лет Ньютон отправился в сад и увидел, как с дерева падает яблоко. В то время физики знали, что Земля каким-то образом притягивает объекты с помощью гравитации. Ньютон развил эту идею.

По словам Джона Кондуитта, помощника Ньютона, при виде яблока, падающего на землю, Ньютону пришла мысль, что гравитационная сила «не была ограничена определенным расстоянием от земли, а простирается гораздо дальше, чем считалось обычно». По мнению Кондуитта, Ньютон задался вопросом: а почему аж не до Луны?

Вдохновленный своими догадками, Ньютон разработал закон всемирного тяготения, который одинаково хорошо работал и с яблоками на Земле, и с планетами, вращающимися вокруг Солнца. Все эти объекты, несмотря на различия, подчиняются одним законам.

«Люди думали, что он объяснил все, что нуждалось в объяснении, - говорит Барроу. - Его достижение было великим».

Проблема в том, что Ньютон знал, что в его работе зияют бреши.

К примеру, гравитация не объясняет, как небольшие объекты удерживаются вместе, поскольку эта сила не так уж и велика. Кроме того, хотя Ньютон мог объяснить, что происходит, он не мог объяснить, как это работает. Теория была неполной.

Была проблема и побольше. Хотя законы Ньютона объяснили наиболее распространенные явления во Вселенной, в некоторых случаях объекты нарушали его законы. Эти ситуации были редкими и обычно включали высокие скорости или повышенную гравитацию, но они были.

Одной из таких ситуаций стала орбита Меркурия, ближайшей к Солнцу планеты. Как и любая другая планета, Меркурий вращается вокруг Солнца. Законы Ньютона можно было применить для расчета движений планет, но Меркурий не хотел играть по правилам. Что более странно, его орбита не имела центра. Стало понятно, что универсальный закон всемирного тяготения был не так уж и универсален, да и не закон вовсе.

Более двух веков спустя Альберт Эйнштейн пришел на помощь со своей теорией относительности. Идея Эйнштейна, которой в 2015 году , предоставила более глубокое понимание гравитации.

Теория относительности


Ключевая идея состоит в том, что пространство и время, которые кажутся разными вещами, на самом деле переплетаются. У пространства есть три измерения: длина, ширина и высота. Время является четвертым измерением. Все четыре связаны в виде гигантской космической клетки. Если вы когда-нибудь слышали фразу «пространственно-временной континуум», именно о нем речь и идет.

Большая идея Эйнштейна заключалась в том, что тяжелые объекты вроде планет или быстро движущиеся могут искривлять пространство-время. Немного похоже на туго натянутый батут: если вы поставите что-нибудь тяжелое на ткань, образуется провал. Любые другие объекты будут скатываться по наклону к объекту во впадине. Потому, по мнению Эйнштейна, гравитация притягивает объекты.

Идея странная по своей сути. Но физики убеждены, что так и есть. Также она объясняет странную орбиту Меркурия. Согласно общей теории относительности, гигантская масса Солнца искривляет пространство и время вокруг. Будучи ближайшей к Солнцу планетой, Меркурий испытывает намного большие искривления, чем другие планеты. Уравнения общей теории относительности описывают, как это искривленное пространство-время влияет на орбиту Меркурия, и позволяют предсказать положение планеты.

Однако, несмотря на свой успех, теория относительности не является теорией всего, как и теории Ньютона. Как и теория Ньютона не работает для по-настоящему массивных объектов, теория Эйнштейна не работает в микромасштабах. Как только вы начинаете рассматривать атомы и все, что меньше, материя начинает вести себя очень странно.


До конца 19 века атом считался наименьшей единицей материи. Родившись от греческого слова «атомос», что означало «неделимый», атом по своему определению не должен был разбиваться на меньшие частицы. Но в 1870-х годах ученые обнаружили частицы, которые в 2000 раз легче атомов. Взвешивая лучи света в вакуумной трубе, они нашли чрезвычайно легкие частицы с отрицательным зарядом. Так была открыта первая субатомная частица: электрон. В следующие полвека ученые обнаружили, что у атома есть составное ядро, вокруг которого снуют электроны. Это ядро состоит из двух типов субатомных частиц: нейтронов, которые обладают нейтральным зарядом, и протонов, которые заряжены положительно.

Но и на этом еще не все. С тех пор ученые находили способы делить материю на все меньшие и меньше части, продолжая уточнять наше понимание фундаментальных частиц. К 1960-м годам ученые нашли десятки элементарных частиц, составив длинный список так называемого зоопарка частиц.

Насколько мы знаем, из трех компонентов атома единственной фундаментальной частицей остался электрон. Нейтроны и протоны делятся на крошечные кварки. Эти элементарные частицы подчиняются совершенно другому набору закону, отличному от тех, которым подчиняются деревья или планеты. И эти новые законы - которые были гораздо менее предсказуемыми - испортили физикам все настроение.

В квантовой физике у частиц нет определенного места: их местонахождение немного смазано. Словно у каждой частицы есть определенная вероятность нахождения в определенном месте. Это означает, что мир по своей сути фундаментально неопределенное место. Квантовую механику даже понять сложно. Как сказал однажды Ричард Фейнман, эксперт в квантовой механике, «думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику».

Эйнштейн тоже был обеспокоен размытостью квантовой механики. Несмотря на то, что он ее, по сути, частично изобрел, сам Эйнштейн никогда не верил в квантовую теорию. Но в своих чертогах - больших и малых - как , так и квантовая механики доказали право на безраздельную власть, будучи чрезвычайно точными.

Квантовая механика объяснила структуру и поведение атомов, включая то, почему некоторые из них являются радиоактивными. Также она лежит в основе современной электроники. Вы не смогли бы прочитать эту статью без нее.

Общая теория относительности предсказала существование черных дыр. Этих массивных звезд, которые коллапсировали сами в себя. Их гравитационное притяжение настолько мощное, что даже свет не может его покинуть.

Проблема в том, что эти две теории несовместимы, поэтому не могут быть верными одновременно. Общая теория относительности гласит, что поведения объектов могут быть точно предсказаны, тогда как квантовая механика говорит, что вы можете знать только вероятность того, что будут делать объекты. Из этого следует, что остаются некоторые вещи, которые физики до сих пор не описали. Черные дыры, например. Они достаточно массивны, чтобы к ним была применима теория относительности, но и достаточно малы, чтобы можно было применить квантовую механику. Если вы не окажетесь близко к черной дыре, эта несовместимость не будет влиять на вашу повседневную жизнь. Но вызывает недоумение у физиков большую часть прошлого века. Именно такая несовместимость заставляет искать теорию всего.

Эйнштейн провел большую часть своей жизни, пытаясь найти такую теорию. Не будучи фанатом случайности квантовой механики, он хотел создать теорию, которая объединит гравитацию и остальную физику, чтобы квантовые странности остались вторичными следствиями.

Его основной задачей было заставить гравитацию работать с электромагнетизмом. В 1800-х годах физики выяснили, что электрически заряженные частицы могут притягиваться или отталкиваться. Потому некоторые металлы притягиваются магнитом. Очевидно, если два вида сил, которые объекты могут оказывать друг на друга, они могут притягиваться посредством гравитации и притягиваться или отталкиваться за счет электромагнетизма.

Эйнштейн хотел объединить две этих силы в «единую теорию поля». Чтобы сделать это, он растянул пространство-время в пять измерений. Вместе с тремя пространственными и одним временным измерениями он добавил пятое измерение, которое должно быть настолько маленьким и свернутым, что мы не смогли бы его видеть.

Это не сработало, и Эйнштейн потратил 30 лет на пустые поиски. Он умер в 1955 году, и его единая теория поля не была раскрыта. Но в следующем десятилетии появился серьезный соперник для этой теории: теория струн.

Теория струн


Идея в основе теории струн довольно проста. Основные ингреденты нашего мира вроде электронов — это не частицы. Это крошечные петли или «струны». Просто поскольку струны очень маленькие, они кажутся точками.

Как и струны на гитаре, эти петли находятся под напряжением. Значит, вибрируют на разных частотах в зависимости от размера. Эти колебания определяют, какой сорт «частицы» будет представлять каждая струна. Вибрация струны одним способом даст вам электрон. Другим - что-нибудь другое. Все частицы, открытые в 20 веке, представляют собой одни виды струн, просто вибрирующих по-разному.

Довольно сложно сразу понять, почему это хорошая идея. Но она подходит для всех сил, действующих в природе: гравитации и электромагнетизма, плюс еще двух, открытых в 20 веке. Сильные и слабые ядерные силы действуют только в пределах крошечных ядер атомов, поэтому их долго не могли обнаружить. Сильная сила удерживает ядро вместе. Слабая сила обычно ничего не делает, но если набирает достаточно силы, разбивает ядро на части: поэтому некоторые атомы радиоактивны.

Любой теории всего придется объяснить все четыре. К счастью, две ядерные силы и электромагнетизм полностью описываются квантовой механикой. Каждая сила переносится специализированной частицей. Но нет ни одной частицы, которая переносила бы гравитацию.

Некоторые физики думают, что она есть. И называют ее «гравитоном». У гравитонов нет массы, особый спин и они движутся со скоростью света. К сожалению, их пока не нашли. И здесь на сцену выходит теория струн. Она описывает струну, которая выглядит точно как гравитон: имеет корректный спин, не обладает массой и движется со скоростью света. Впервые в истории теория относительности и квантовая механика нащупали общую почву.

В середине 1980-х годов физики были восхищены теорией струн. «В 1985 году мы поняли, что теория струн решает кучу проблем, которые мучили людей последние 50 лет», - говорит Барроу. Но и у нее оказались проблемы.

Во-первых, «мы не понимаем, чем является струнная теория, в нужных деталях», говорит Филип Канделас из Оксфордского университета. «У нас нет хорошего способа ее описать».

Кроме того, некоторые прогнозы выглядят странно. В то время как теория единого поля Эйнштейна полагается на дополнительное скрытое измерение, простейшие формы теории струн нуждаются в 26 измерениях. Они нужны, чтобы увязать математику теорию с тем, что мы уже знаем о Вселенной.

Более продвинутые версии, известные как «теории суперструн», обходятся десятью измерениями. Но даже это не стыкуется с тремя измерениями, которые мы наблюдаем на Земле.

«С этим можно справиться, если допустить, что только три измерения расширились в нашем мире и стали большими, - говорит Барроу. - Другие присутствуют, но остаются фантастически малыми».

Из-за этих и других проблем, многие физики не любят теорию струн. И предлагают другую теорию: петлевая квантовая гравитация.

Петлевая квантовая гравитация


Эта теория не ставит перед собой задачу объединить и включить все, что есть в физике частиц. Вместо этого петлевая квантовая гравитация просто пытается вывести квантовую теорию гравитации. Она более ограничена, чем теория струн, но не настолько громоздка. Петлевая квантовая гравитация предполагает, что пространство-время разделено на небольшие кусочки. Издалека кажется, что это гладкий лист, но при ближайшем рассмотрении видно кучу точек, соединенных линиями или петельками. Эти маленькие волокна, которые сплетаются, предлагают объяснение гравитации. Эта идея так же непостижима, как струнная теория, и обладает схожими проблемами: нет никаких экспериментальных подтверждений.

Почему эти теории до сих пор обсуждаются? Возможно, мы просто не знаем достаточно. Если обнаружатся крупные явления, которых мы никогда не видели, мы можем пытаться понять крупную картину, а недостающие части головоломки доберем потом.

«Заманчиво думать, что мы обнаружили все, - говорит Барроу. - Но было бы весьма странно, если бы к 2015 году мы сделали все необходимые наблюдения, чтобы получить теорию всего. Почему это должно быть так?».

Есть и другая проблема. Эти теории сложно проверить, в значительной степени потому, что у них крайне жестокая математика. Канделас пытался найти способ проверить теорию струн в течение многих лет, но так и не смог.

«Главным препятствием на пути продвижения теории струн остается недостаточное развитие математики, которая должна сопровождать физические исследования, - говорит Барроу. - Она находится на раннем этапе, еще многое нужно исследовать».

При всем этом теория струн остается многообещающей. «На протяжении многих лет люди пытались объединить гравитацию с остальной физикой, - говорит Канделас. - У нас были теории, которые хорошо объясняли электромагнетизм и другие силы, но не гравитацию. С теорией струн мы пытаемся их объединить».

Реальная проблема заключается в том, что теорию всего может быть просто невозможно идентифицировать.

Когда теория струн стала популярной в 1980-х годах, было на самом деле пять ее версий. «Люди начали беспокоиться, - говорит Барроу. - Если это теория всего, почему их пять?». В течение следующего десятилетия, физики обнаружили, что эти теории могут быть преобразованы одна в другую. Это просто разные способы видения одного и того же. В результате появилась выдвинутая в 1995 году М-теория. Это глубокая версия теории струн, включающая все ранние версии. Что ж, мы по крайней мере вернулись к единой теории. М-теория требует всего 11 измерений, что намного лучше 26. Однако М-теория не предлагает единую теорию всего. Она предлагает миллиарды их. В общей сложности М-теория предлагает нам 10^500 теорий, все из которых будут логически последовательны и способны описать Вселенную.

Это выглядит хуже, чем бесполезно, но многие физики полагают, что это указывает на более глубокую истину. Возможно, наша Вселенная - одна из множества, каждая из которых описывается одной из триллионов версий М-теории. И это гигантское собрание вселенных называется « ».

В начале времен мультивселенная была как «большая пена из пузырей разных форм и размеров», говорит Барроу. Каждый пузырь затем расширился и стал вселенной.

«Мы в одном из таких пузырей, - говорит Барроу. По мере расширения пузырьков внутри них могли образоваться другие пузырьки, новые вселенные. - В процессе этого география такой вселенной серьезно усложнилась».

В каждой вселенной-пузыре действуют одни и те же физические законы. Потому в нашей вселенной все ведет себя одинаково. Но в других вселенных могут быть другие законы. Отсюда рождается странный вывод. Если теория струн действительно лучший способ объединить теорию относительности и квантовую механику, то обе они одновременно и будут, и не будут теорией всего.

С одной стороны, теория струн может дать нам совершенное описание нашей вселенной. Но она также неизбежно приведет к тому, что каждая из триллионов других вселенной будет уникальна. Серьезным изменением в мышлении будет то, что мы перестанем ждать единую теорию всего. Может быть множество теорией всего, каждая из которых будет верной в своем роде.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

Начало квантовой физики

Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

Понимание микромира в начале ХХ века

В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их полного понимания структуры атома не существовало.

Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях - волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.

После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление - некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области - квантовой запутанности частиц.

Теория квантовой запутанности

Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

Мир подчинён строгим законам физики

Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.
Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

Аналогия и понимание

Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.

Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.

Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

Где может быть использована квантовая спутанность?

Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету - триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

Это в очередной раз говорит о том, что мы стоим на пороге великих открытий - перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

Эфиродинамика и квантовая запутанность

По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём - методом ассоциации.

Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.
Корабль будет нашей элементарной частицей, а море - эфиром (тёмной энергией).
Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей - каплей.

Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

Микромир живёт по своим законам

Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина - вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

Новая гипотеза - новый взгляд на мир

Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия - целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами - по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство - время.

Эпилог

Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.

Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это .

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» - значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики - слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света - высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.

В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии - 1, 2, 14, 137 раз - и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны - некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».

Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.

Это не всегда очевидно - даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.

Квантовая физика является вероятностной

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция - это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии - состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном - зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Квантовая физика нелокальна

Последний не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х - они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Квантовая физика (почти всегда) связана с очень малым

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект - вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Квантовая физика - не магия


Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.

Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, - бесконечная энергия, волшебная целительная сила, невозможные космические двигатели - это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.

Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения.

Как современные физики-теоретики разрабатывают новые теории, описывающие мир? Что такого они добавляют к квантовой механике и общей теории относительности, чтобы построить «теорию всего»? О каких ограничениях идет речь в статьях, говорящих про отсутствие «новой физики»? На все эти вопросы можно ответить, если разобраться, что такое действие - объект, лежащий в основе всех существующих физических теорий. В этой статье я расскажу, что физики понимают под действием, а также покажу, как с его помощью можно построить настоящую физическую теорию, используя всего несколько простых предположений о свойствах рассматриваемой системы.

Сразу предупреждаю: в статье будут формулы и даже несложные вычисления. Впрочем, их вполне можно пропускать без большого вреда для понимания. Вообще говоря, я привожу здесь формулы только для тех заинтересованных читателей, которые непременно хотят разобраться во всем самостоятельно.

Уравнения

Физика описывает наш мир с помощью уравнений, связывающих вместе различные физические величины - скорость, силу, напряженность магнитного поля и так далее. Практически все такие уравнения являются дифференциальными, то есть содержат не только функции, зависящие от величин, но и их производные. Например, одно из самых простых уравнений, описывающее движение точечного тела, содержит вторую производную от его координаты:

Здесь я обозначил вторую производную по времени двумя точками (соответственно, одной точкой будет обозначаться первая производная). Конечно же, это второй закон Ньютона, открытый им в конце XVII века. Ньютон одним из первых осознал необходимость записывать уравнения движения в такой форме, а также разработал дифференциальное и интегральное исчисление, необходимое для их решения. Разумеется, большинство физических законов гораздо сложнее, чем второй закон Ньютона. Например, система уравнений гидродинамики настолько сложна, что ученые до сих пор не знают, разрешима она в общем случае или нет. Проблема существования и гладкости решений этой системы даже входит в список «проблем тысячелетия» , и математический институт Клэя назначил за ее решение приз в один миллион долларов.

Однако как же физики находят эти дифференциальные уравнения? В течение долгого времени единственным источником новых теорий был эксперимент. Другими словами, первым делом ученый проводил измерения нескольких физических величин, и только потом пытался определить, как они связаны. Например, именно таким образом Кеплер открыл три знаменитых закона небесной механики, которые впоследствии привели Ньютона к его классической теории тяготения. Получалось, что эксперимент как будто «бежит впереди теории».

В современной же физике дела устроены немного по-другому. Конечно, эксперимент до сих пор играет в физике очень важную роль. Без экспериментального подтверждения любая теория является всего лишь математической моделью - игрушкой для ума, не имеющей отношения к реальному миру. Однако сейчас физики получают уравнения, описывающие наш мир, не эмпирическим обобщением экспериментальных фактов, а выводят их «из первых принципов», то есть на основании простых предположений о свойствах описываемой системы (например, пространства-времени или электромагнитного поля). В конечном счете, из эксперимента определяются только параметры теории - произвольные коэффициенты, которые входят в выведенное теоретиком уравнение. При этом ключевую роль в теоретической физике играет принцип наименьшего действия , впервые сформулированный Пьером Мопертюи в середине XVIII века и окончательно обобщенный Уильямом Гамильтоном в начале XIX века.

Действие

Что же такое действие? В самой общей формулировке действие - это функционал, который ставит в соответствие траектории движения системы (то есть функции от координат и времени) некоторое число. А принцип наименьшего действия утверждает, что на истинной траектории действие будет минимально. Чтобы разобраться в значении этих умных слов, рассмотрим следующий наглядный пример, взятый из Фейнмановских лекций по физике .

Допустим, мы хотим узнать, по какой траектории будет двигаться тело, помещенное в поле тяжести. Для простоты будем считать, что движение полностью описывается высотой x (t ), то есть тело движется вдоль вертикальной прямой. Предположим, что мы знаем о движении только то, что тело стартует в точке x 1 в момент времени t 1 и приходит в точку x 2 в момент t 2 , а полное время в пути составляет T = t 2 − t 1 . Рассмотрим функцию L , равную разности кинетической энергии К и потенциальной энергии П : L = К П . Будем считать, что потенциальная энергия зависит только от координаты частицы x (t ), а кинетическая - только от ее скорости (t ). Также определим действие - функционал S , равный среднему значению L за все время движения: S = ∫ L (x , , t ) dt .

Очевидно, что значение S будет существенно зависеть от формы траектории x (t ) - собственно, поэтому мы называем его функционалом, а не функцией. Если тело слишком высоко поднимется (траектория 2), вырастет средняя потенциальная энергия, а если оно станет слишком часто петлять (траектория 3), увеличится кинетическая - мы ведь предположили, что полное время движения в точности равно T , а значит, телу нужно увеличить скорость, чтобы успеть пройти все повороты. В действительности функционал S достигает минимума на некоторой оптимальной траектории, которая является участком параболы, проходящей через точки x 1 и x 2 (траектория 1). По счастливому стечению обстоятельств, эта траектория совпадает с траекторией, предсказанной вторым закон Ньютона.


Примеры траекторий, соединяющих точки x 1 и x 2 . Серым отмечена траектория, полученная вариацией истинной траектории. Вертикальное направление отвечает оси x , горизонтальное - оси t

Случайно ли это совпадение? Разумеется, не случайно. Чтобы показать это, предположим, что мы знаем истинную траекторию, и рассмотрим ее вариации . Вариация δx (t ) - это такая добавка к траектории x (t ), которая изменяет ее форму, но оставляет начальную и конечную точки на своих местах (смотри рисунок). Посмотрим, какое значение принимает действие на траекториях, отличающихся от истинной траектории на бесконечно малую вариацию. Раскладывая функцию L и вычисляя интеграл по частям, мы получаем, что изменение S пропорционально вариации δx :


Здесь нам пригодился тот факт, что вариация в точках x 1 и x 2 равна нулю - это позволило отбросить члены, которые появляются после интегрирования по частям. Получившееся выражение очень напоминает формулу для производной, записанную через дифференциалы. Действительно, выражение δS x иногда называют вариационной производной. Продолжая эту аналогию, мы заключаем, что при добавлении малой добавки δx к истинной траектории действие измениться не должно, то есть δS = 0. Поскольку добавка может быть практически произвольной (мы зафиксировали только ее концы), это означает, что подынтегральное выражение тоже обращается в ноль. Таким образом, зная действие, можно получить дифференциальное уравнение, описывающее движение системы, - уравнение Эйлера-Лагранжа.

Вернемся к нашей задаче с телом, перемещающимся в поле силы тяжести. Напомню, что мы определили функцию L как разность кинетической и потенциальной энергии тела. Подставляя это выражение в уравнение Эйлера-Лагранжа, мы действительно получаем второй закон Ньютона. В самом деле, наша догадка о виде функции L оказалась очень удачной:


Получается, что с помощью действия можно записывать уравнения движения в очень краткой форме, как будто «упаковывая» все особенности системы внутри функции L . Уже само по себе это достаточно интересно. Однако действие является не просто математической абстракцией, оно обладает глубоким физическим смыслом. В общем-то, современный физик-теоретик первым делом выписывает действие, а только потом выводит уравнения движения и исследует их. Во многих случаях действие для системы можно построить, делая только простейшие предположения о ее свойствах. Посмотрим, как это можно сделать, на нескольких примерах.


Свободная релятивистская частица

Когда Эйнштейн строил специальную теорию относительности (СТО), он постулировал несколько простых утверждений о свойствах нашего пространства-времени. Во-первых, оно является однородным и изотропным, то есть не меняется при конечных смещениях и поворотах. Другими словами, неважно, где вы находитесь - на Земле, на Юпитере или в галактике Малое Магелланово Облако - во всех этих точках законы физики работают одинаково. Кроме того, вы не заметите никаких отличий, если будете двигаться равномерно прямолинейно - в этом заключается принцип относительности Эйнштейна. Во-вторых, никакое тело не может превысить скорость света. Это приводит к тому, что привычные правила пересчета скоростей и времени при переходе между различными системами отсчета - преобразования Галилея - нужно заменить на более правильные преобразования Лоренца . В результате по-настоящему релятивистской величиной, одинаковой во всех системах отсчета, становится не расстояние, а интервал - собственное время частицы. Интервал s 1 − s 2 между двумя заданными точками можно найти с помощью следующей формулы, где c - скорость света:


Как мы увидели в предыдущей части, нам достаточно выписать действие для свободной частицы, чтобы найти ее уравнение движения. Разумно предположить, что действие является релятивистским инвариантом, то есть выглядит одинаково в разных системах отсчета, поскольку физические законы в них одинаковы. Кроме того, мы хотели бы, чтобы действие записывалось как можно проще (сложные выражения оставим на потом). Самый простой релятивистский инвариант, который можно связать с точечной частицей - это длина ее мировой линии . Выбирая этот инвариант в качестве действия (чтобы размерность выражения была правильной, умножим его на коэффициент −mc ) и варьируя его, мы получаем следующее уравнение:


Проще говоря, 4-ускорение свободной релятивистской частицы должно быть равно нулю. 4-ускорение, как и 4-скорость - это обобщения понятий ускорения и скорости на четырехмерное пространство-время. В результате свободная частица может двигаться только вдоль заданной прямой с постоянной 4-скоростью. В пределе низких скоростей изменение интервала практически совпадает с изменением времени, а потому полученное нами уравнение переходит в уже обсуждавшийся выше второй закон Ньютона: mẍ = 0. С другой стороны, условие равенства нулю 4-ускорения выполняется для свободной частицы и в общей теории относительности, только в ней пространство-время уже начинает искривляться и частица не обязательно будет двигаться вдоль прямой даже при отсутствии внешних сил.

Электромагнитное поле

Как известно, электромагнитное поле проявляет себя во взаимодействии с заряженными телами. Обычно это взаимодействие описывают с помощью векторов напряженности электрического и магнитного поля, которые связаны системой из четырех уравнений Максвелла . Практически симметричный вид уравнений Максвелла наводит на мысль, что эти поля не являются независимыми сущностями - то, что кажется нам электрическим полем в одной системе отсчета, может превратиться в магнитное поле, если перейти в другую систему.

В самом деле, рассмотрим провод, по которому бегут с одинаковой и постоянной скоростью электроны. В системе отсчета, связанной с электронами, есть только постоянное электрическое поле, которое можно найти с помощью закона Кулона . Однако в исходной системе отсчета движение электронов создает постоянный электрический ток, который, в свою очередь, наводит постоянное магнитное поле (закон Био-Савара). В то же время, согласно с принципом относительности, в выбранных нами системах отсчета законы физики должны совпадать. Это значит, что и электрическое, и магнитное поля являются частями какой-то одной, более общей сущности.

Тензоры

Прежде чем мы перейдем к ковариантной формулировке электродинамики, стоит сказать несколько слов по поводу математики специальной и общей теории относительности. Важнейшую роль в этих теориях играет понятие тензора (да и в других современных теориях тоже, если честно). Если совсем грубо, то тензор ранга (n , m ) можно представлять себе как (n +m )-мерную матрицу, компоненты которой зависят от координат и времени. Вдобавок к этому тензор должен определенным хитрым образом меняться при переходе из одной системы отсчета в другую или при изменениях координатной сетки. Как именно, определяет число контравариантных и ковариантных индексов (n и m соответственно). При этом сам тензор как физическая сущность при подобных преобразованиях не меняется - так же как не меняется при них 4-вектор, который является частным случаем тензора ранга 1.

Нумеруются компоненты тензора с помощью индексов. Для удобства различают верхние и нижние индексы, чтобы сразу видеть, как преобразуется тензор при смене координат или системы отсчета. Так, например, компонента тензора T ранга (3, 0) записывается как T αβγ , а тензора U ранга (2, 1) - как U α β γ . По сложившейся традиции, компоненты четырехмерных тензоров нумеруют греческими буквами, а трехмерных - латинскими. Впрочем, некоторые физики предпочитают делать наоборот (например, Ландау).

Кроме того, для краткости Эйнштейн предложил не писать знак суммы «Σ» при сворачивании тензорных выражений. Свертка - это суммирование тензора по двум заданным индексам, причем один из них обязательно должен быть «верхним» (контравариантным), а другой - «нижним» (ковариантным). Например, чтобы вычислить след матрицы - тензора ранга (1, 1) - нужно свернуть ее по двум имеющимся индексам: Tr[A μ ν ] = Σ A μ μ = A μ μ . Поднимать и опускать индексы можно с помощью метрического тензора: T αβ γ = T αβμ g μγ .

Наконец, удобно ввести абсолютно антисимметричный псевдотензор ε μνρσ - тензор, который меняет знак при любых перестановках индексов (например, ε μνρσ = −ε νμρσ) и у которого компонента ε 1234 = +1. Еще его называют тензором Леви-Чивита. При поворотах системы координат ε μνρσ ведет себя как обычный тензор, однако при инверсиях (замене вроде x → −x ) он преобразуется по-другому.

Действительно, векторы электрического и магнитного поля объединяются в такую структуру, которая является инвариантной относительно преобразований Лоренца - то есть не меняется при переходе между различными (инерциальными) системами отсчета. Это так называемый тензор электромагнитного поля F μν . Нагляднее всего будет записать его в виде следующей матрицы:


Здесь компоненты электрического поля обозначены буквой E , а компоненты магнитного поля - буквой H . Легко видеть, что тензор электромагнитного поля является антисимметричным, то есть его компоненты, стоящие по разные стороны от диагонали, равны по модулю и имеют противоположные знаки. Если мы хотим получить уравнения Максвелла «из первых принципов», нам нужно выписать действие электродинамики. Чтобы сделать это, мы должны сконструировать самую простую скалярную комбинацию из имеющихся у нас тензорных объектов, так или иначе связанных с полем или со свойствами пространства-времени.

Если задуматься, выбор у нас невелик - в качестве «строительных блоков» может выступать только тензор поля F μν , метрический тензор g μν и абсолютно антисимметричный тензор ε μνρσ . Из них можно собрать всего две скалярные комбинации, причем одна из них является полной производной, то есть ее можно не учитывать при выводе уравнений Эйлера-Лагранжа - после интегрирования эта часть просто обратится в ноль. Выбирая оставшуюся комбинацию в качестве действия и варьируя его, мы получим пару уравнений Максвелла - половину системы (первая строчка). Казалось бы, двух уравнений мы не досчитались. Однако на самом деле нам не нужно выписывать действие, чтобы вывести оставшиеся уравнения - они следуют напрямую из антисимметричности тензора F μν (вторая строчка):


И снова мы получили правильные уравнения движения, выбрав в качестве действия простейшую возможную комбинацию. Правда, поскольку мы не учитывали существование зарядов в нашем пространстве, мы получили уравнения для свободного поля, то есть для электромагнитной волны. При добавлении зарядов в теорию их влияние тоже нужно учитывать. Это делается включением вектора 4-тока в действие.

Гравитация

Настоящим триумфом принципа наименьшего действия в свое время стало построение общей теории относительности (ОТО). Благодаря ему впервые были выведены законы движения, которые ученые не могли получить путем анализа экспериментальных данных. Или могли, но не успели. Вместо этого Эйнштейн (и Гильберт, если угодно) вывел уравнения на метрику, отталкиваясь от предположений о свойствах пространства-времени. Начиная с этого момента, теоретическая физика стала «обгонять» экспериментальную.

В ОТО метрика перестает быть постоянной (как в СТО) и начинает зависеть от плотности помещенной в нее энергии. Замечу, что корректнее говорить все-таки об энергии, а не о массе, хотя эти две величины связаны соотношением E = mc 2 в собственной системе отсчета. Напомню, что метрика задает правила, по которым вычисляется расстояние между двумя точками (строго говоря, бесконечно близкими точками). Важно, что метрика не зависит от выбора системы координат. Например, плоское трехмерное пространство можно описать с помощью декартовой либо сферической системы координат, но в обоих случаях метрика пространства будет совпадать.

Чтобы выписать действие для гравитации, нам нужно построить из метрики какой-нибудь инвариант, который не будет меняться при изменении координатной сетки. Самым простым таким инвариантом является детерминант метрики. Тем не менее, если мы включим в действие только его, мы не получим дифференциальное уравнение, поскольку это выражение не содержит производных метрики. А если уравнение не является дифференциальным, оно не может описывать ситуации, в которых метрика меняется со временем. Поэтому нам нужно добавить к действию простейший инвариант, который содержит производные g μν . Таким инвариантом является так называемый скаляр Риччи R , который получается сверткой тензора Римана R μνρσ , описывающего кривизну пространства-времени:


Robert Couse-Baker / flickr.com

Теория всего

Наконец, пришло время поговорить о «теории всего». Так называют несколько теорий, которые пытаются объединить ОТО и Стандартную модель - две основные известные на данный момент физические теории. Ученые предпринимают такие попытки не только из эстетических соображений (чем меньше теорий нужно для понимания мира - тем лучше), но и по более веским причинам.

И у ОТО, и у Стандартной модели есть границы применимости, после которых они перестают работать. Например, ОТО предсказывает существование сингулярностей - точек, в которых плотность энергии, а значит, и кривизна пространства-времени, стремится к бесконечности. Мало того, что бесконечности сами по себе малоприятны - вдобавок к этой проблеме Стандартная модель утверждает, что энергию невозможно локализовать в точке, ее нужно размазывать по некоторому, пусть и небольшому, объему. Поэтому вблизи сингулярности эффекты и ОТО, и Стандартной модели должны быть велики. В то же время ОТО до сих пор не удалось проквантовать, а Стандартная модель строится в предположении плоского пространства-времени. Если мы хотим понимать, что происходит около сингулярностей, нам нужно разработать теорию, которая будет включать в себя обе указанные теории.

Имея в виду, какой успех имел принцип наименьшего действия в прошлом, ученые основывают на нем все свои попытки построить новую теорию. Помните, мы рассматривали только самые простые комбинации, когда строили действие для различных теорий? Тогда наши действия увенчались успехом, но это вовсе не значит, что самое простое действие является самым правильным. Вообще говоря, природа не обязана подстраивать свои законы, чтобы упростить нашу жизнь.

Поэтому разумно включить в действие следующие, более сложные инвариантные величины и посмотреть, к чему это приведет. Чем-то это напоминает последовательное приближении функции многочленами все более высоких степеней. Проблема тут только в том, что все такие поправки входят в действие с некими неизвестными коэффициентами, которые нельзя вычислить теоретически. К тому же, поскольку Стандартная модель и ОТО в целом все-таки хорошо работают, эти коэффициенты должны быть очень маленькими - следовательно, их сложно определить из эксперимента. Многочисленные работы, сообщающие об «ограничениях на новую физику», как раз-таки направлены на определение коэффициентов при высших порядках теории. До сих пор им удалось найти только ограничения сверху.

Кроме того, существуют подходы, вводящие новые, нетривиальные концепции. Например, теория струн предполагает, что свойства нашего мира можно описать с помощью колебаний не точечных, а протяженных объектов - струн. К сожалению, экспериментальные подтверждения теории струн до сих пор не найдены. Например, она предсказывала некоторые возбуждения на ускорителях, но они так и не проявились.

В общем, пока не похоже, что ученые близко подобрались к открытию «теории всего». Наверное, теоретикам все-таки придется придумывать что-то существенно новое. Впрочем, можно не сомневаться, что первым делом они выпишут для новой теории действие.

***

Если все эти рассуждения показались вам сложными и вы пролистали статью не читая, вот краткая выжимка тех фактов, которые в ней обсуждались. Во-первых, все современные физические теории так или иначе полагаются на понятие действия - величины, которая описывает, насколько системе «нравится» та или иная траектория движения. Во-вторых, уравнения движения системы можно получить, разыскивая траекторию, на которой действие принимает наименьшее значение. В-третьих, действие можно построить, используя всего несколько элементарных предположений о свойствах системы. Например, о том, что законы физики совпадают в системах отсчета, которые движутся с разными скоростями. В-четвертых, некоторые из кандидатов на «теорию всего» получаются простым добавлением в действие Стандартной модели и ОТО членов, которые нарушают какое-то из предположений этих теорий. Например, лоренц-инвариантность. Если после прочтения статьи вы запомнили перечисленные утверждения, это уже хорошо. А если вы еще и поняли, откуда они берутся - просто замечательно.

Дмитрий Трунин