Основные положения классической электронной теории электропроводности металлов. Основные положения классической теории электропроводности металлов

План лекции

5.1. Классическая теория электропроводности металлов.

5.2. Вывод закона Ома и закона Джоуля - Ленца.

5.3. Недостатки классической теории электропроводности металлов.

Классическая теория электропроводности металлов

Любая теория считается законченной, только если в ней прослежен путь от элементарного механизма явления до найденных в ней макросоотношений, использующихся в технической практике. В данном случае неодолимо было связать особенности упорядоченного движения свободных зарядов в проводнике (электропроводимость) с основными законами электрического тока. Прежде всего необходимо было выяснить природу носителей тока в металлах. Основополагающими в этом смысле явились опыты Рикке 1 , в которых в течение длительного времени (год) ток пропускался через три последовательно соединенных металлических цилиндра (Сu, А1, Сu ) одинакового сечения с тщательно отшлифованными притертыми торцами. Через эту цепь протек огромный заряд (≈ 3,5·10 6 Кл). Несмотря на это, не было обнаружено никаких (даже микроскопических) следов переноса вещества из цилиндра в цилиндр (что подтверждалось тщательным взвешиванием). Отсюда был сделан вывод, что в металлах в процессе переноса электрического заряда участвуют какие-то частицы, общие (одинаковые) для всех металлов.

Природу таких частиц можно было определить по знаку и величине удельного заряда (отношения заряда носителя к его массе) - параметру индивидуальному для любой из известных сегодня микрочастиц. Идея такого эксперимента заключается в следующем: при резком торможении металлического проводника слабо связанные с решеткой носители тока должны по инерции смещаться вперед. Результатом такого смещения является импульс тока, а по направлению тока можно определить знак носителей и, зная размеры и сопротивление проводника, можно вычислить и удельный заряд носителей. Такие эксперименты дали значения отношения , что совпало с удельным зарядом электронов. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны. При образовании кристаллической решетки металла (при сближении изолированных атомов) слабо связанные с ядрами валентные электроны отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны.

Основоположники классической теории электропроводности металлов Друде 2 и Лоренц 3 впервые показали, что любое множество невзаимодействующих микрочас-


Рикке Карл Виктор Эдуард (1845 – 1915), немецкий физик

2 Друде Пауль Карл Людвиг (1863 – 1906), немецкий физик

3 Лоренц Хендрик Антон (1853 – 1928), нидерландский физик-теоретик

тиц (в том числе свободные электроны в металле) можно рассматривать как идеальный газ, то есть к свободным электронам в металле применимы все выводы молекулярно-кинетической теории.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между идеальным газом свободных электронов и решеткой. Среднюю скорость свободных электронов можно найти в соответствии с выражением для средней арифметической скорости хаотического теплового движения молекул идеального газа (см. формулу (8.26) в лекции 8, часть I):

которая при комнатных температурах (Т ≈ 300 К) дает <u > = 1,1·10 5 м/с.

При наложении внешнего электрического поля на проводник кроме теплового движения электронов возникает и их упорядоченное движение, то есть электрический ток. Среднюю скорость упорядоченного движения электронов - <v > можно определить согласно (4.4). При максимально допустимой плотности тока в реальных проводниках (≈ 10 7 А/м 2) количественная оценка дает <v > ≈ 10 3 -10 4 м/с. Таким образом, даже в предельных случаях средняя скорость упорядоченного движения электронов (обуславливающего электрический ток) значительно меньше их скорости хаотического теплового движения (<v > << <u >). Поэтому при вычислениях результирующей скорости можно считать, что (<v > + <u >) ≈ <u >. Выше уже отмечалось, что конечной целью классической теории электропроводности металлов является вывод основных закономерностей электрического тока, исходя из рассмотренного элементарного механизма движения носителей тока. В качестве примера, рассмотрим, как это было сделано, при выводе закона Ома в дифференциальной форме.

5.2. Вывод закона Ома и закона Джоуля – Ленца

Пусть в металлическом проводнике существует электрическое поле с напряженностью . Со стороны поля электрон испытывает действие кулоновской силы F = eE и приобретает ускорение . Согласно теории Друде в конце длины свободного пробега <l > электрон, сталкивается с ионом решетки, отдает накопленную при движении в поле энергию (скорость его упорядоченного движения становится равной нулю). Двигаясь равноускоренно электрон, приобретает к концу свободного пробега скорость , где - среднее время между двумя последовательными столкновениями электрона с ионами решетки. Средняя скорость направленного движения электрона равна

Так как (<v > + <u >) ≈ <u >, то и (5.1) принимает вид . Таким образом, плотность тока, согласно (4.4), можно представить как

. (5.2)

Сравнивая это выражение с законом Ома в дифференциальной форме, можно увидеть, что эти выражения тождественны при условии, что удельная проводимость

Таким образом, в рамках классической теории электропроводности металлов и был выведен закон Ома в дифференциальной форме.

Аналогично был выведен и закон Джоуля - Ленца, получена количественная связь между удельной проводимостью и теплопроводностью с учетом того, что в металлах перенос электричества и теплоты осуществляется одними и теми же частицами (свободными электронами) и ряд других соотношений.

Основы классической теории
электропроводности
металлов


2.11.
Основные
положения
классической
электронной теории проводимости металлов
Друде – Лоренца.
2.12. Вывод законов Ома, Джоуля-Ленца и
Видемана-Франца на основе теории Друде Лоренца.
2.13.
Затруднения
классической
теории
электропроводности
металлов.
Сверхпроводимость
металлов.
Открытие
высокотемпературной сверхпроводимости.

2.10. Природа носителей тока в металлах.

Для выяснения природы носителей тока в металлах был поставлен ряд опытов.
Опыт Рикке (Riecke C., 1845-1915). В 1901г. Рикке осуществил опыт, в котором
он пропускал ток через стопку цилиндров с тщательно отполированными
торцами Cu-Al-Cu. Перед началом опыта образцы были взвешены с высокой
степенью точности (Δm = ±0,03 мг). Ток пропускался в течение года. За это
время через цилиндры прошел заряд q = 3,5∙106 Кл.
По окончании опыта цилиндры были вновь взвешены. Взвешивание показало, что
пропускание тока не оказало никакого влияния на вес цилиндров. При
исследовании торцевых поверхностей под микроскопом также не было
обнаружено проникновения одного металла в другой. Результаты опыта Рикке
свидетельствовали о том, что носителями тока в металлах являются не
атомы, а какие-то частицы, которые входят в состав всех металлов.
Такими частицами могли быть электроны, открытые в 1897 г. Томсоном (Thomson
J., 1856-1940) в опытах с катодными лучами. Чтобы отождествить носители
тока в металлах с электронами, необходимо было определить знак и величину
удельного
заряда носителей. Это
_
Cu
было осуществлено в
+
опыте Толмена и
Al
Стюарта (Tolman R.,
Cu
1881-1948, Stewart B.,
1828-1887).
Рис.6.1. Опыт Рикке.

Опыт Толмена и Стюарта. Суть опыта, проведенного в 1916 г.,
состояла в определении удельного заряда носителей тока при резком
торможении проводника. В опыте для этой цели использовалась
катушка из медного провода длиной 500 м, которая приводилась в
быстрое вращение (линейная скорость витков составляла 300 м/с), а
затем резко останавливалась. Заряд, протекавший по цепи за время
торможения, измерялся с помощью баллистического гальванометра.
Найденный из опыта удельный заряд носителя тока q / m 1,71 1011 Кл / кг,
оказался очень близким к величине удельного заряда электрона
(e / m 1,76 1011 Кл / кг) , откуда был сделан вывод о том, что ток в металлах
переносится электронами.
_
V
V
a 0 U 0
a
К опыту Толмена-Стюарта с инерцией электронов.
U
ma
d
q

2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.

Исходя из представлений о свободных электронах как основных носителях тока в металлах,
Друде (Drude P., 1863-1906) разработал классическую теорию электропроводности металлов,
которая затем была усовершенствована Лоренцем (Lorentz H., 1853-1928).
Основные положения этой теории сводятся к следующим:
1). Носителями тока в металлах являются электроны, движение которых подчиняется
законом классической механики.
2). Поведение электронов подобно поведению молекул идеального газа (электронный
газ).
3). При движении электронов в кристаллической решетке можно не учитывать
столкновения электронов друг с другом.
4). При упругом столкновении электронов с ионами электроны полностью передают
им накопленную в электрическом поле энергию.
Средняя тепловая скорость хаотического движения электронов при Т ≈ 300К составляет
8kT
8 1,38 10 23 300
10 5 м / с 100км / c
.
31
m
3,14 9,1 10
При включении электрического поля на хаотическое движение электронов накладывается
упорядоченное движение (называемое иногда «дрейфовым»), происходящее с некоторой
средней скоростью u ; возникает направленное
движение
электронов – электрический ток.
Плотность тока определяется по формуле
.
j ne u
Оценки показывают, что при максимально допустимой
плотности тока в металлах j = 107 А/м2
и концентрации носителей 1028 – 1029м-3 ,
. Таким
образом, даже при очень
u 10 3 м / с 1мм
/c
больших плотностях тока средняя скорость упорядоченного движения электронов
u .

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов
Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в
кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным
электрическим полем. Масштабы дрейфа
сильно преувеличены

2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.

Закон Ома.
Ускорение, приобретаемое электроном в электрическом поле
e
На пути свободного пробега
величины
eE
a
.
m
Е
λ максимальная
скорость электрона достигнет
u max
eE
m
,
где τ - время свободного пробега: / .
Среднее значение скорости упорядоченного
движения есть:
u
eE
u
.
2
2m
Подставив это значение в формулу для плотности тока, будем иметь:
ne
j u ne
E ,
2m v
max
2
Полученная формула представляет собой закон Ома в дифференциальной форме:
ne 2
j E ,
2m
где σ – удельная электропроводность металла:
ne 2
ne 2
2m
2m
.

Закон Джоуля - Ленца
Кинетическая энергия электрона, которую он имеет к моменту
соударения с ионом:
2
m 2
mumax
E кин
.
2
2
При столкновении с ионом энергия, полученная электроном в
2
электрическом поле E mumax , полностью передается иону. Число
кин
1
2
соударений одного электрона в единицу времени равно
, где λ
– длина свободного пробега электрона. Общее число столкновений
за единицу времени в единице объема равно N n
. Тогда
количество тепла, выделяющегося в единице объема проводника за
единицу времени будет:
2
2
Q уд N
mumax
ne 2
E
2
2m
.
Последнюю формулу можно представить в виде закона Джоуля-Ленца в
дифференциальной форме:
1
Q уд Е 2 E 2
,
где ρ =1/σ – удельное сопротивление металла.

Закон Видемана-Франца.
Из
опыта
известно,
что
металлы,
наряду
с
высокой
электропроводностью, обладают также высокой теплопроводностью.
Видеман (Wiedemann G., 1826-1899) и Франц (Franz R.,) установили в
1853 г. эмпирический закон, согласно которому отношение
коэффициента
теплопроводности
κ
к
коэффициенту
электропроводности σ для всех металлов приблизительно одинаково и
изменяется пропорционально абсолютной температуре:
.
8
2
,
3
10
Т
Рассматривая электроны как одноатомный
газ, можем на основании
кинетической
теории
газов
написать
для
коэффициента
теплопроводности электронного газа:
1
1
,
nm cv nk
3
2 при постоянном
3 k - удельная теплоемкость одноатомного
где
газа
cv
объеме.
2m
Разделив κ на σ, приходим к закону Видемана-Франца:
.
k
3 T
e и е = 1,6·10-19 Кл, найдем, что
Подставив сюда k = 1,38·10-23 Дж/К
2
,
что очень хорошо согласуется с
2,23 10 8 Т
экспериментальными
данными.

10. 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводи

2.13. Затруднения классической теории
электропроводности металлов. Сверхпроводимость
металлов. Открытие высокотемпературной
сверхпроводимости.
Несмотря на достигнутые успехи, классическая электронная теория
проводимости металлов Друде-Лоренца не получила дальнейшего
развития.
Связано это с двумя основными причинами:
1) трудностями, с которыми столкнулась эта теория при объяснении
некоторых свойств металлов;
2) созданием более совершенной квантовой теории проводимости
твердых тел, устранившей затруднения классической теории и
предсказавшей ряд новых свойств металлов.

11.

Выделим основные затруднения теории Друде-Лоренца:
1. Согласно классической теории, зависимость удельного сопротивления
металлов от температуры ~ T в то время, как на опыте в широком
интервале температур вблизи Т≈300К для большинства металлов
наблюдается зависимость ρ ~ Т.
2. Хорошее количественное совпадение с законом Видемана-Франца
оказалось в известной степени случайным. В первоначальном
варианте теории Друде не учитывал распределение электронов по
скоростям. Позже, когда Лоренц учел это распределение, оказалось,
2
что отношение будет
k
2 T
,
e
что значительно хуже согласуется с экспериментом. Согласно же
2
квантовой теории,
2 k
8
T 2,45 10 Т
.
3 e
3. Теория дает неправильное значение теплоемкости металлов. С
учетом теплоемкости электронного газа С=9/2R, а на практике С=3R,
что примерно соответствует теплоемкости диэлектриков.
4. Наконец, теория оказалась полностью неспособной объяснить
открытое в 1911г. Камерлинг-Оннесом (Kamerligh-Onnes H., 18531926)
явления
сверхпроводимости
(полного
исчезновения
сопротивления) металлов при низких температурах, а также
существования остаточного сопротивления, в сильной степени
зависящего от чистоты металла.

12.

1
2
Тк
1-металл с
примесями
2-чистый металл
Т
Зависимость сопротивления металлов от температуры.
(Тк – температура перехода в сверхпроводящее состояние)
Интересно отметить, что в отношении
низкотемпературных сверхпроводников
(металлов) действует правило: металлы с
более высоким удельным сопротивлением
ρ имеют и более высокую критическую
температуру сверхпроводящего перехода
Ткр (см. таблицу).
.
Таблица. Свойства низкотемпературных
сверхпроводников
Металл
ρ
Тк, К
Титан
1,7
0,4
Алюминий
2,5
1,2
Ртуть
9,4
4,1
Свинец
22
7,2

13.

Феноменологическая теория низкотемпературной сверхпроводимости
была создана в 1935г. Ф.и Г. Лондонами (London F., 1900-1954, London
H., 1907-1970), но лишь спустя почти полвека (в 1957г.) явление
сверхпроводимости получило окончательное объяснение в рамках
микроскопической (квантовой) теории, созданной Дж.Бардиным, Л.
Купером и Дж. Шриффером (Bardeen J., Cooper L., Schrieffer J.).
В 1986г. Дж. Беднорцем (Bednorz J.) и К. Мюллером (Müller K.) было
открыто явление высокотемпературной сверхпроводимости в
керамических металлоксидах (лантана, бария и др. элементов),
являющихся диэлектриками при комнатной температуре. Критическая
температура перехода в сверхпроводящее состояние для этих
материалов около 100К.
Теория высокотемпературной сверхпроводимости в настоящее время
находится в стадии разработки и пока далека от своего завершения.
Неясен даже механизм возникновения высокотемпературной
сверхпроводимости.

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863-1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов -опыт Рикке * (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×10 6 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856-1940) электроны.

*К. Рикке (1845-1915) - немецкий физик.

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед,как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879-1944) и Н. Д. Папалекси (1880-1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881-1948) и ранее шотландским физиком Б. Стюартом (1828-1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.



Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T =300 К равна 1,1×10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость áv ñ упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j =пe áv ñ. Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концент­рации носителей тока n = 8×10 28 м –3 средняя скорость áv ñ упорядоченного движения электронов равна 7,8×10 –4 м/с. Следовательно, áv ñ<<áu ñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость áv ñ + áu ñ можно заменять скоростью теплового движения áu ñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c =3×10 8 м/с). Через время t =l /c (l - длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчи­няться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквад­ратичная скорость теплового движения электронов »10 5 м/с.

Хаотичное тепловое движение электронов не может привести к возникнове­нию электрического тока, но под действием внешнего электрического поля в проводнике возникает упо­рядоченное движение электронов со скоростью . Оценить величину можно из ранее выведенного соотношения , где j - плотность тока, - концентрация электронов, e - заряд электрона. Как по­казывает расчет, »8×10 -4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Каза­лось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распро­странение электрического поля со скоростью 3×10 8 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сиг­нала.

На базе классической электронной теории были выведены рассмотренные выше основные законы электрического тока - законы Ома и Джоуля-Ленца в диф­фе­ренциальной форме и . Кроме того, классическая теория дала качественное объяснение закону Видемана-Франца. В 1853 г. И.Видеман и Ф.Франц установили, что при определенной темпе­ра­туре отношение коэффициента теплопроводности l к удельной проводимости g оди­наково для всех металлов. Закон Видемана-Франца имеет вид , где b - постоянная, не зависящая от природы металла. Классическая электронная теория объясняет и эту закономерность. Электр­оны проводимости, перемещаясь в металле, переносят с собой не только электриче­ский заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те метал­лы, кото­рые хорошо проводят электрический ток, являются хорошими проводни­ками тепла. Классическая электронная теория качественно объяснила природу электриче­с­кого сопротивления металлов. Во внешнем поле упорядоченное движение элек­тронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, кото­рую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла.

Вместе с тем классическая теория встретилась с су­щественными затруднениями. Перечислим некоторые из них:

1. Несоответствие теории и эксперимента возникло при расчете теплоемко­сти металлов. Согласно кинетической теории молярная теплоемкость металлов должна складываться из теплоемкости атомов и теплоемкости свободных электронов. Так как атомы в твердом теле совершают только колебательные движения, то их молярная теплоемкость равна С=3R (R=8.31 Дж/(моль×К) - молярная газовая постоянная); свободные электроны двигаются только поступательно и их молярная теплоемкость равна С=3/2R. Общая теплоемкость должна быть С»4.5R , но согласно опытным данным С=3R.

Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Видемана-Франца.


Электрический ток в металлах –это упорядоченное движение электронов под действием электрического поля.
Это предположение было экспериментально подтверждено в опыте К. Рикке (1911).
Через цепь из трех последовательных цилиндров - медного, алюминиевого и снова медного - в течение долгого времени (около года) пропускался электрический ток - в общей сложности через цилиндры прошел заряд 3,5 МКл. Однако никаких следов переноса вещества (меди или алюминия) не было обнаружено. Отсюда следовало, что электропроводность металлов отвечают свободные заряды, общие для всех металлов - на эту роль подходили только электроны.

Еще одно убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта)(1916).

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и

в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

При торможении вращающейся катушки на каждый носитель заряда e массой m действует тормозящая сила, которая играет роль сторонней силы, т. е. силы неэлектрического происхождения:

Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила :

За время торможения катушки по цепи протечет заряд q, равный:

Где – длина проволоки катушки, I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, – начальная линейная скорость проволоки.

Полученное в опытах значение удельного заряда носителей тока в металле оказался близким к удельному заряду электрона

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов , равной по порядку величины числу атомов в единице объема .

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ.

Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер . Высота этого барьера называется работой выхода .

При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории:

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Величина дрейфовой скорости электронов лежит в пределах 0,6 – 6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения.

Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках: закон Ома , закон Джоуля – Ленца и объясняет существование электрического сопротивления металлов.

Закон Ома:

Электрическое сопротивление проводника.