Энергия электрического поля системы зарядов. Электрическая энергия системы зарядов

Энергетический подход к взаимодействию. Энергети­ческий подход к взаимодействию электрических зарядов является, как мы увидим, весьма плодотворным по своим практическим применениям, а кроме того, открывает воз­можность по-иному взглянуть и на само электрическое поле как физическую реальность.

Прежде всего мы выясним, как можно прийти к поня­тию о энергии взаимодействия системы зарядов.

1. Сначала рассмотрим систему из двух точечных зарядов 1 и 2. Найдем алгебраическую сумму элементар­ных работ сил F, и F2, с которыми эти заряды взаимодей­ствуют. Пусть в 1гекоторой К-системе отсчета за время cU заряды совершили перемещения dl, и dl 2. Тогда со­ответствующая работа этих сил

6Л, 2 = F, dl, + F2 dl2.

Учитывая, что F2 = - F, (по третьему закону Ньюто­на) , перепишем предыдущее выражение: Mlj, = F,(dl1-dy.

Величина в скобках - это перемещение заряда 1 от­носительно заряда 2. Точнее, это есть перемещение заря­да/в /("-системе отсчета, жестко связанной с зарядом 2 и перемещающейся вместе с ним поступательно по отношению к исходной /(-системе. Действительно, пере­мещение dl, заряда 1 в /(-системе может быть представ­лено как перемещение dl2 /("-системы плюс перемещение dl, заряда / относительно этой /("-системы: dl, = dl2+dl,. Отсюда dl, - dl2 = dl", и

Итак, оказывается, что сумма элементарных работ в произвольной /(-системе отсчета всегда равна элемен­тарной работе, которую совершает сила, действующая на один заряд, в системе отсчета, где другой заряд по­коится. Иначе говоря, работа 6Л12 не зависит от выбора исходной /(-системы отсчета.

Сила F„ действующая на заряд / со стороны заряда 2, консервативная (как сила центральная). Поэтому работа данной силы на перемещении dl, может быть представлена как убыль потенциальной энергии заряда 1 в поле заряда 2 или как убыль потенциальной энергии взаимодействия рассматриваемой пары зарядов:

где 2 - величина, зависящая только от расстояния между этими зарядами.

2. Теперь перейдем к системе из т р е х точечных за­рядов (полученный для этого случая результат легко будет обобщить на систему из произвольного числа зарядов). Работа, которую совершают все силы взаимо­действия при элементарных перемещениях всех зарядов, может быть представлена как сумма работ всех трех пар взаимодействий, т. е. 6Л = 6Л (2 + 6Л, 3 + 6Л 2 3. Но для каждой пары взаимодействий, как только что было пока­зано, 6Л ik = - d Wik, поэтому

где W - энергия взаимодействия данной системы зарядов,

W «= wa + Wtз + w23.

Каждое слагаемое этой суммы зависит от расстояния между соответствующими зарядами, поэтому энергия W

данной системы зарядов есть функция ее конфигурации.

Подобные рассуждения, очевидно, справедливы и для системы из любого числа зарядов. Значит, можно утверждать, что каждой конфигурации произвольной си­стемы зарядов присуще свое значение энергии W и рабо­та всех сил взаимодействия при изменении этой конфигу­рации равна убыли энергии W:

бл = -аг. (4.1)

Энергия взаимодействия. Найдем выражение для энергии W. Сначала рассмотрим опять систему из трех точечных зарядов, для которой мы показали, что W = - W12+ ^13+ ^23- Преобразуем эту сумму следующим образом. Представим каждое слагаемое Wik в симметрич­ном виде: Wik= ]/2{Wlk+ Wk), поскольку Wik=Wk, Тогда

Сгруппируем члены с одинаковыми первыми индексами:

Каждая сумма в круглых скобках - это энергия Wt взаи­модействия г-го заряда с остальными зарядами. Поэтому последнее выражение можно переписать так:

Обобщение произвольного

полученного выражения на систему из числа зарядов очевидно, ибо ясно, что проведенные рассуждения совершенно не зависят от числа зарядов, состав­ляющих систему. Итак, энергия взаимо­действия системы точечных зарядов

Имея в виду, что Wt = <7,9, где qt - i-й заряд системы; ф,- потен­циал, создаваемый в месте нахождения г-го заряда всеми остальными зарядами системы, получим окончательное выражение для энергии взаимодействия системы точечных зарядов:

Пример. Четыре одинаковых точечных заряда q находятся в вершинах тетраэдра с ребром а (рис. 4.1). Найти энергию взаимодействия зарядов этой системы.

Энергия взаимодействия каждой пары зарядов здесь одина­кова и равна = q2/Але0а. Всего таких взаимодействующих пар, как видно из рисунка, шесть, поэтому энергия взаимодей­ствия всех точечных зарядов данной системы

W = 6№, = 6<72/4яе0а.

Иной подход к решению этого вопроса основан на исполь­зовании формулы (4.3). Потенциал ф в месте нахождения одного из зарядов, обусловленный полем всех остальных заря­дов, равен ф = 3<7/4яе0а. Поэтому

Полная энергия взаимодействия. Если заряды распре­делены непрерывно, то, разлагая систему зарядов на со­вокупность элементарных зарядов dq = р dV и переходя от суммирования в (4.3) к интегрированию, получаем

где ф - потенциал, создаваемый всеми зарядами систе­мы в элементе объемом dV. Аналогичное выражение можно записать для распределения зарядов, например, по поверхности; для этого достаточно в формуле (4.4) заменить р на о и dV на dS.

Можно ошибочно подумать (и это часто приводит к недоразумениям), что выражение (4.4) -это только видоизмененное выражение (4.3), соответствующее заме­не представления о точечных зарядах представлением о непрерывно распределенном заряде. В действительно­сти это не так - оба выражения отличаются по своему содержанию. Происхождение этого различия - в разном смысле потенциала ф, входящего в оба выраже­ния, что лучше всего пояснить на следующем примере.

Пусть система состоит из двух шариков, имеющих за­ряды д, и q2" Расстояние между шариками значительно больше их размеров, поэтому заряды ql и q2 можно счи­тать точечными. Найдем энергию W данной системы с помощью обеих формул.

Согласно формуле (4.3)

W= "AUitPi + 2> где, ф[ - потенциал, создаваемый зарядом q2 в месте

нахождения заряда аналогичный смысл имеет

и потенциал ф2.

Согласно же формуле (4.4) мы должны разбить заряд каждого шарика на бесконечно малые элементы р AV и каждый из них умножить на потенциал ф, создаваемый не только зарядами другого шарика, но и элементами заряда этого шарика. Ясно, что результат будет совершенно другим, а именно:

W=Wt + W2+Wt2, (4.5)

где Wt - энергия взаимодействия друг с другом элемен­тов заряда первого шарика; W2 - то же, но для второго шарика; Wi2 - энергия взаимодействия элементов заря­да первого шарика с элементами заряда второго шарика. Энергии W, и W2 называют собственными энер­гиями зарядов qx и q2, a W12-энергией взаи­модействия заряда с зарядом q2.

Таким образом, мы видим, что расчет энергии W по формуле (4.3) дает только Wl2, а расчет по формуле (4.4)-полную энергию взаимодействия: кроме W{2 еще и собственные энергии IF, и W2. Игнори­рование этого обстоятельства зачастую является источ­ником грубых ошибок.

К данному вопросу мы еще вернемся в § 4.4, а сейчас получим с помощью формулы (4.4) несколько важных результатов.

Электрическая энергия системы зарядов.

Работа поля при поляризации диэлектрика.

Энергия электрического поля.

Как и всякая материя, электрическое поле обладает энергией. Энергия является функцией состояния, а состояние поля задается напряженностью. Откуда следует, что энергия электрического поля является однозначной функцией напряжённости. Так как, то крайне важно ввести представление о концентрации энергии в поле. Мерой концентрации энергии поля является её плотность:

Найдём выражение для. Рассмотрим для этого поле плоского конденсатора, считая его всюду однородным. Электрическое поле в любом конденсаторе возникает в процессе его зарядки, который можно представить как перенос зарядов от одной пластины к другой (см. рисунок). Элементарная работа͵ затраченная на перенос заряда равна:

где, а полная работа:

которая идет на увеличение энергии поля:

Учитывая, что (электрического поля не было), для энергии электрического поля конденсатора получаем:

В случае плоского конденсатора:

так как, - объём конденсатора, равный объёму поля. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, плотность энергии электрического поля равна:

Эта формула справедлива только в случае изотропного диэлектрика.

Плотность энергии электрического поля пропорциональна квадрату напряженности. Эта формула, хотя и получена для однородного поля, верна для любого электрического поля. В общем случае энергию поля можно вычислить по формуле:

В выражении входит диэлектрическая проницаемость. Это означает, что в диэлектрике плотность энергии больше чем в вакууме. Это связано с тем, что при создании поля в диэлектрике совершается дополнительная работа͵ связанная с поляризацией диэлектрика. Подставим в выражение для плотности энергии значение вектора электрической индукции:

Первое слагаемое связано с энергией поля в вакууме, второе – с работой, затраченное на поляризацию единицы объема диэлектрика.

Элементарная работа͵ затраченная полем на приращение вектора поляризации равна.

Работа по поляризации единицы объема диэлектрика равна:

так как, что и требовалось доказать.

Рассмотрим систему из двух точечных зарядов (см. рисунок) согласно принципу суперпозиции в любой точке пространства:

Плотность энергии электрического поля

Первое и третье слагаемые связаны с электрическими полями зарядов и соответственно, а второе слагаемое отражает электрическую энергию, связанную со взаимодействием зарядов:

Собственная энергия зарядов величина положительная, а энергия взаимодействия может быть как положительной, так и отрицательной.

В отличие от вектора энергия электрического поля – величина не аддитивная. Энергию взаимодействия можно представить более простым соотношением. Для двух точечных зарядов энергия взаимодействия равна:

которую можно представить как сумму:

где - потенциал поля заряда в месте нахождения заряда, а - потенциал поля заряда в месте нахождения заряда.

Обобщая полученный результат на систему из произвольного числа зарядов, получим:

где - заряд системы, - потенциал, создаваемый в месте нахождения заряда, всœеми остальными зарядами системы.

В случае если заряды распределœены непрерывно с объемной плотностью, сумму следует заменить объёмным интегралом:

где - потенциал, создаваемый всœеми зарядами системы в элементе объемом. Полученное выражение соответствует полной электрической энергии системы.

Работа электрического поля по перемещению заряда

Понятие работы A электрического поля E по перемещению заряда Q вводится в полном соответствии с определением механической работы:

где - разность потенциалов (также употребляется термин напряжение)

Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов U (t ) , в таком случае формула для работы следует переписать следующим образом:

где - сила тока

Мощность электрического тока в цепи

Мощность W электрического тока для участка цепи определяется обычным образом, как производная от работы A по времени, то есть выражением:

Это наиболее общее выражение для мощности в электрической цепи.

С учётом закона Ома :

Электрическую мощность, выделяемую на сопротивлении R можно выразить как через ток : ,

Соответственно, работа (выделившаяся теплота) является интегралом мощности по времени:

Энергия электрического и магнитного полей

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.

В системе СИ :

где E - напряжённость электрического поля , H - напряжённость магнитного поля , - электрическая постоянная, и - магнитная постоянная. Иногда для констант и - используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, - которые являются крайне неудачными, и сейчас почти не употребляются.

Потоки энергии электромагнитного поля

Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в российской научной традиции - вектор Умова-Пойнтинга).

В системе СИ вектор Пойнтинга равен: ,

Векторному произведению напряжённостей электрического и магнитного полей, и направлен перпендикулярно векторам E и H . Это естественным образом согласуется со свойством поперечности электромагнитных волн.

Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей, и имеет совершенно тот же вид: .

Сам факт существования потоков энергии в постоянных электрических и магнтных полях, на первый взгляд, выглядит очень странно, но это не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.

· Потенциал электрического поля есть величина, равная отношению потенциальной энергии точечного положительного заряда, помещенную в данную точку поля, к этому заряду

или потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к этому заряду:

Потенциал электрического поля в бесконечности условно принят равным нулю.

Отметим, что при перемещении заряда в электрическом поле работа A в.с внешних сил равна по модулю работе A с.п сил поля и противоположна ей по знаку:

A в.с = – A с.п.

· Потенциал электрического поля, создаваемый точечным зарядом Q на расстоянии r от заряда,

· Потенциал электрического поля, создаваемого металлической, несущей заряд Q сферой радиусом R , на расстоянии r от центра сферы:

внутри сферы (r <R) ;

на поверхности сферы (r =R) ;

вне сферы (r>R) .

Во всех приведенных для потенциала заряженной сферы формулах e есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

· Потенциал электрического поля, созданного системой п точечных зарядов, в данной точке в соответствии с принципом суперпозиции электрических полей равен алгебраическойсуммепотенциалов j 1 , j 2 , ... , j n , создаваемых отдельными точечными зарядами Q 1 , Q 2 , ..., Q n :

· Энергия W взаимодействия системы точечных зарядов Q 1 , Q 2 , ..., Q n определяется работой, которую эта система зарядов может совершить при удаленииих относительно друг друга в бесконечность, и выражается формулой

где - потенциал поля, создаваемого всеми п– 1 зарядами (за исключением i -го) в точке, где расположен заряд Q i .

· Потенциал связан с напряженностью электрического поля соотношением

В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой

или в скалярной форме

а в случае однородного поля, т. е. поля, напряженность которого в каждой точке его одинакова как по модулю, так и по направлению

где j 1 и j 2 - потенциалы точек двух эквипотенциальных поверхностей; d – расстояние между этими поверхностями вдоль электрической силовой линии.

· Работа, совершаемая электрическим полем при перемещении точечного заряда Q из одной точки поля, имеющей потенциал j 1 , в другую, имеющую потенциал j 2

A =Q ∙ (j 1 – j 2 ), или

где E l - проекция вектора напряженности на направление перемещения; dl - перемещение.

В случае однородного поля последняя формула принимает вид

A=Q∙E∙l∙cosa ,

где l - перемещение; a - угол между направлениями вектора и перемещения .


Диполь есть система двух точечных электрических зарядов равных по размеру и противоположных по знаку, расстояние l ме­жду которыми значительно меньше расстояния r от центра диполя до точек наблюдения.

Вектор проведенный от отрицательного заряда диполя к его положительному заряду, называется плечом диполя.

Произведение заряда |Q | диполя на его плечо называется электрическим моментом диполя:

· Напряженность поля диполя

где р - электрический момент диполя; r - модуль радиуса-вектора, проведенного от центра диполя к точке, напряженность поля в которой нас интересует; α- угол между радиусом-вектором и плечом диполя.

· Потенциал поля диполя

· Механический момент, действующий на диполь с электрическим моментом , помещенный в однородное электрическое поле с напряженностью

илиM=p∙E∙ sin ,

где α- угол между направлениями векторов и .

В неоднородном электрическом поле кроме механического момента (пары сил) на диполь действует еще некоторая сила. В случае поля, обладающего симметрией относительно оси х ,сила выражается соотношением

где - частная производная напряженности поля, характеризующая степень неоднородности поля в направлении оси х.

При сила F х положительна. Это значит, что под действием ее диполь втягивается в область сильного поля.

Потенциальная энергия диполя в электрическом поле

Рассмотрим систему из двух точечных зарядов (см. рисунок) согласно принципу суперпозиции в любой точке пространства:

.

Плотность энергии электрического поля

Первое и третье слагаемые связаны с электрическими полями зарядов исоответственно, а второе слагаемое отражает электрическую энергию, связанную со взаимодействием зарядов:

Собственная энергия зарядов величина положительная
, а энергия взаимодействия может быть как положительной, так и отрицательной
.

В отличие от вектора энергия электрического поля – величина не аддитивная. Энергию взаимодействия можно представить более простым соотношением. Для двух точечных зарядов энергия взаимодействия равна:

,

которую можно представить как сумму:

где
- потенциал поля зарядав месте нахождения заряда, а
- потенциал поля зарядав месте нахождения заряда.

Обобщая полученный результат на систему из произвольного числа зарядов, получим:

,

где -
заряд системы,- потенциал, создаваемый в месте нахождения
заряда,всеми остальными зарядами системы.

Если заряды распределены непрерывно с объемной плотностью , сумму следует заменить объёмным интегралом:

,

где - потенциал, создаваемый всеми зарядами системы в элементе объемом
. Полученное выражение соответствуетполной электрической энергии системы.

Примеры.

    Заряженный металлический шар в однородном диэлектрике .

На этом примере мы выясним почему электрические силы в диэлектрике меньше чем в вакууме и рассчитаем электрическую энергию такого шара.

Напряжённость поля в диэлектрике меньше напряжённости в вакууме враз
.

Это связано с поляризацией диэлектрика и возникновением у поверхности проводника связанного заряда противоположного знака заряда проводника(см. рисунок). Связанные зарядыэкранируют поле свободных зарядов, уменьшая его всюду. Напряжённость электрического поля в диэлектрике, равна сумме
, где
- напряжённость поля свободных зарядов,
- напряжённость поля связанных зарядов. Учитывая, что
, находим:






.

Поделив на площадь поверхности проводника, находим связь между поверхностной плотностью связанных зарядов
и поверхностной плотностью свободных зарядов:

.

Полученное соотношение пригодно для проводника любой конфигурации в однородном диэлектрике.

Найдём энергию электрического поля шара в диэлектрике:

Здесь учтено, что
, а элементарный объём с учётом сферической симметрии поля выбран в форме шарового слоя.– ёмкость шара.

Так как зависимость напряжённости электрического поля внутри и вне шара от расстояния до центра шара rописывается различными функциями:

вычисление энергии сводится к сумме двух интегралов:

.

Отметим, что на поверхности и в объёме диэлектрического шара возникают связанные заряды:

,
,

где
- объёмная плотность свободных зарядов в шаре.

Доказательство проведите самостоятельно, используя связи
,
и теорему Гаусса
.

Собственная энергия каждой оболочки равны соответственно (см. пример 1.):

,
,

а энергия взаимодействия оболочек:

.

Полная энергия системы равна:

.

Если оболочки заряжены одинаковыми по величине зарядами противоположного знака
(сферический конденсатор), полная энергия будет равна:

где
- ёмкость сферического конденсатора.


Напряжение, приложенное к конденсатору равно:

,

где и- напряжённость электрического поля в слоях.

Электрическая индукция в слоях:

- поверхностная плотность свободных зарядов на пластинах конденсатора.

Учитывая связь
из определения ёмкости, получаем:

.

Полученная формула легко обобщается на случай многослойного диэлектрика:

.