Чему равна средняя квадратичная скорость. Средняя квадратичная скорость

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Виктор:

Очень доволен своим дипломом. Спасибо. Если бы Вы еще паспорта научились делать, это было бы идеально.

Карина:

Сегодня получила свой диплом. Спасибо за качественную работу. Все сроки тоже соблюдены. Обязательно буду рекомендовать Вас всем своим знакомым.



1 моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде массой 0,012 кг.

Моли любых газов при одинаковых температурах и давлении занимают одинаковые объемы - закон Авогадро . При нормальных условиях (р =1,013·10 5 Па, Т =273, 15 К) этот объем равен 22,41·10 -3 м 3 /моль.

Число молекул (структурных единиц) в 1 моле равно числу Авогадро: N A =6,02·10 23 моль -1 .

уравнение Менделеева - Клапейрона:

Или (3.11)

где М - молярная масса газа, - количество вещества, R

Если N - общее число молекул газа, dN - число молекул, скорости которых заключены в интервале от до +d , то закон распределения Максвелла запишется в виде:

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью :

. (3.14)

Если выразить скорости молекул не в обычных единицах, а в относительных, приняв за единицу скорости наиболее вероятную скорость молекул, то распределение Максвелла принимает вид:

Зависимость давления атмосферы от высоты над уровнем моря при постоянной температуре называют барометрической формулой:

где n и n 0 – концентрация молекул на высоте h и h 0 =0.

Под внутренней энергией U в термодинамике понимают энергию теплового движения частиц, образующих систему, и потенциальную энергию их взаимного положения:

2) теплота, сообщенная системе в процессе изменения ее состояния, расходуется на изменение ее внутренней энергии и на совершение работы против внешних сил:

где dU – малое изменение внутренней энергии; δ Q – элементарное количество теплоты; δ А – элементарная работа.

Работа расширения, совершаемая при конечных изменениях объема :

(3.23)

Теплоемкостью системы тел (тела) называется физическая величина, равная отношению количества теплоты dQ , которое нужно затратить для нагревания системы тел (тела), к изменению температуры dТ, характеризующей это нагревание:

. [C]=Дж/К. (3.24)

Удельной теплоемкостью вещества с называется скалярная величина, равная отношению теплоемкости однородного тела С к его массе:

. [c ]= Дж/(кг.К) (3.25)

Молярной теплоемкостью называется физическая величина, численно равная отношению теплоемкости системы С к количеству вещества n, содержащегося в ней:

. =Дж/(моль.К) (3.26)

Различают молярные теплоемкости при постоянном объеме и постоянном давлении :

, . (3.27)

Уравнение, связывающее молярные теплоемкости при постоянном давлении и постоянном объеме имеет вид (уравнение Майера ):

C p – C V = R . (3.28)

Первое начало термодинамики при изохорическом процессе (V =const; dV=0 , dA=pdV= 0): – теплота, сообщаемая системе при изохорическом процессе, идет на изменение внутренней энергии.

, (3.29)

При этом работа не совершается.

Первое начало термодинамики при изобарическом процессе (p=const):

. (3.30)

Работа изобарного расширения равна

. (3.31)

Первое начало термодинамики при изотермическом процессе (Т =const; dT= 0; ): – теплота, сообщаемая системе при изотермическом процессе, идет на работу против внешних сил:

(3.32)

Адиабатным называется процесс, протекающий без теплообмена с внешней средой: dQ=0.

Из первого закона термодинамики:

то естьработа при адиабатическом процессе совершается за счет убыли внутренней энергии.

Уравнения Пуассона (уравнения состояния для адиабатического процесса):

Величина g - показатель адиабаты - определяется числом и характером степеней свободы молекулы (табл.4 приложения):

. (3.34)


При сопоставлении адиабатного и изотермического процессов (рис. 3.4) видно, что адиабата проходит более круто, чем изотерма.

Политропным называется термодинамический процесс, в котором теплоемкость тела постоянна: С =const.

Уравнения политропного процесса в идеальном газе :

pV n = const, ТV n-1 = const, (3.35)

где – показатель политропы, зависящий от удельной теплоемкости газа.

Существует несколько формулировок второго начала термодинамики :

1. Формулировка Клаузиуса : Невозможен процесс, единственным конечным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому.

2. Формулировка Томсона (Кельвина): Невозможен процесс, единственным конечным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу.

Круговой процесс – это совокупность термодинамических процессов, в результате которых система возвращается в исходное состояние. На диаграммах состояния круговые процессы изображаются замкнутыми линиями.

Прямым циклом называется круговой процесс, в котором система совершает положительную работу . Примером прямого цикла является цикл, совершаемый рабочим телом в тепловом двигателе.

Обратным циклом называется круговой процесс, в котором система совершает отрицательную работу (например, цикл рабочего тела в холодильной установке).

Коэффициент полезного действия (КПД) тепловой машины - это отношение совершаемой за цикл работы А к количеству теплоты, полученному рабочим телом от нагревателя Q 1 :

, (3.36)

где Q 1 – количество теплоты, полученное рабочим веществом, Q 2 – количество теплоты, отданное рабочим веществом холодильнику.


Циклом Карно называется круговой процесс, при котором выполненная системой работа максимальна. Прямой цикл Карно состоит из четырех последовательных обратимых процессов: изотермического расширения (1®2) при температуре Т 1 , адиабатического расширения и сжатий (2®3, изотермического сжатия (3®4) при температуре Т 2 и адиабатического сжатия (4®1) (рис.3.5.).

Машина, совершающая цикл Карно, называется идеальной тепловой машиной.

Термический коэффициент полезного действия прямого цикла Карно, совершаемого идеальным газом:

. (3.37)

где Т 1 и T 2 – значения температуры нагревателя и холодильника, участвующих в осуществлении рассматриваемого цикла.

Функция состояния S, дифференциал которой

называетсяэнтропией. Здесь dQ –бесконечно малое количество теплоты, сообщенное системе в элементарном обратимом процессе.

Изменение энтропии в любом обратимом процессе, переводящем систему из состояния 1 в состояние 2, равно приведенному количеству теплоты, переданному системе в этом процессе

, (3.39)

где S 1 и S 2 – значения энтропии в состояниях 1 и 2, DS – изменение энтропии в течение обратимого процесса.

Термодинамическая вероятность системы W- это число всевозможных распределений частиц по координатам и скоростям, соответствующих данному термодинамическому состоянию.

Термодинамическая вероятность и энтропия связаны соотношением (формула Больцмана ):

При нарушении равновесия система стремится вернуться в равновесное состояние. Этот процесс сопровождается возрастанием энтропии и, следовательно, необратим. Нарушение равновесия сопровождается переносом массы (диффузия), импульса (внутреннее трение) или энергии (теплопроводность). Эти процессы называются явлениями переноса . Следовательно, явления переноса представляют собой необратимые процессы.

Средней длиной свободного пробега молекул `l называется среднее расстояние, которое молекула проходит без столкновений:

(3.41)

Число столкновений, испытываемых молекулой в единицу времени, может быть различным. Поэтому следует говорить о среднем значении этой величины:

, (3.42)

где n – концентрация молекул.

Средняя длина свободного пробега и среднее число столкновений в единицу времени связаны между собой уравнением:

где – средняя арифметическая скорость.

Коэффициент диффузии это масса, переносимая в единицу времени через единичную площадку в направлении нормали к этой площадке в сторону убывания плотности компонента при градиенте плотности, равном единице

. (3.44)

коэффициентом внутреннего трения (коэффициентом вязкости) численно равен импульсу, переносимому в единицу времени через единичную площадку при единичном градиенте скорости:

. (3.45)

Коэффициент теплопроводности , численно равный количеству теплоты, переносимому в единицу времени через единичную площадку при единичном градиенте температуры:

([К ]=Вт/м.К) , (3.46)

где ρ – плотность газов.

Примеры решения задач

Задача 3.1. Определить молярную массу смеси кислорода массой m 1 = 25 г и азота массой m 2 = 75 г.

Количество вещества смеси равно сумме количества компонентов:

. (3)

Подставив в формулу (1) выражения (2) и (3) и преобразовав, получим:

.

Молярные массы кислорода М 1 и азота М 2 определяем из таблицы Менделеева:

М 1 =32·10 -3 кг/моль и М 2 =28·10 -3 кг/моль

Вычисления:

Задача 3.2. Два баллона соединены трубкой с закрытым клапаном, объемом которой можно пренебречь. В баллоне объемом 0,02 м 3 находится газ под давлением 1,6×10 4 Па, а в баллоне объемом 0,06 м 3 - тот же газ под давлением 1,2×10 4 Па. Какое давление установится в баллонах, если открыть кран? Температура газа остается постоянной.

где р 1 " - давление газа первого сосуда, р 2 " - давление газа второго сосуда.

По условию задачи температура газа остается неизменной, следовательно, согласно закону Бойля-Мариотта для двух состояний газа можно записать:

, (2)

Решая полученную систему уравнений

Проверить единицы физических величин слева и справа от знака равенства

Вычисления :

1,3×10 4 Па.

Ответ: р = 1,3×10 4 Па.

Задача 3.3. Баллон содержит m 1 = 80 г кислорода и m 2 =320 г аргона. Давление смеси р =1 МПа, температура Т =300 К. Принимая данные газы за идеальные, определить объем V баллона.

По закону Дальтона давление смеси равно сумме парциальных давлений газов, входящих в состав смеси:

р = р 1 + р 2 (2)

Подставив уравнение (1) в уравнение (2), получим:

.

из последнего выражения найдем объем баллона:

,

где М 1 =32·10 -3 кг/моль – молярная масса кислорода, М 2 =40·10 -3 кг/моль – молярная масса аргона (из таблицы Менделеева).

Вычисления:

Ответ: V=0,0262 м 3

Задача 3.4. Найти среднюю кинетическую энергию вращательного движения одной молекулы кислорода при температуре Т=350 К, а также кинетическую энергию Е к вращательного движения всех молекул кислорода массой m =4 г.

Так как вращательному движению двухатомной молекулы (молекула кислорода – двухатомная) соответствуют две степени свободы, то средняя энергия вращательного движения молекулы кислорода:

Кинетическая энергия вращательного движения всех молекул газа:

Число всех молекул газа найдем из формулы количества вещества:

, (3)

где N A =6,02·10 23 моль -1 - число Авогадро, ν - количество вещества, М=32·10 -3 кг/моль – молярная масса кислорода.

Подставляя уравнение (3) в формулу (2), получим:

.

Вычисления:

Ответ: ,

Задача 3.5. Некоторое количество гелия расширяется: сначала адиабатно, а затем изобарно. Конечная температура газа равна начальной. При адиабатном расширении газ совершил работу, равную 4,5 кДж. Какова работа газа за весь процесс?

На графике процесс 1-2 является адиабатным, т.е Q = 0; процесс 2 – 3 - изобарный (р = const). Так как начальные и конечные температуры равны (по условию задачи), то процесс 3 – 1 будет изотермическим (Т=const).

полная работа равна сумме работ на каждом из участков:

А 123 = А 12 + А 23 (1)

По первому закону термодинамики для адиабатного процесса, учитывая, что газ одноатомный работа А 12 газа на участке 1-2, равна изменению внутренней энергии , взятой со знаком «минус»:

где М = 4·10 -3 кг/моль – молярная масса гелия, Т 1 и Т 2 – абсолютные температуры газа в состоянии 1 и 2 соответственно, R =8,31 - универсальная газовая постоянная.

Работа изобарного расширения, учитывая, что Т 3 = Т 1 , равна

Решая совместно полученные уравнения

А 123 = А 12 + А 23

А 123 = А 12.

Вычисления :

А 123 = ·4,5·10 3 =7500 Дж

Ответ: А 123 = 7500 Дж.

Задача 3.6. Коэффициент диффузии D и вязкость η водорода при некоторых условиях равны D = 1,42·10 -4 м 2 /си η = 8,5 мкПа·с. Диаметр молекул водорода σ = 0,3 нм. Найти число n молекул водорода в единице объема.

Средняя длина свободного пробега молекул; ρ – плотность газа.

Количество вещества:

,

где М=2·10 -3 кг/моль – молярная масса водорода; m – масса газа; N A =6,02·10 23 моль -1 - число Авогадро, ν - количество вещества.

Концентрация молекул водорода n определяется числом молекул N в единице объема V :

Решая совместно систему уравнений:

можно получить:

Вычисления:

м -3

Ответ: n = 1,8·10 25 м -3

задача 3.7. Тепловая машина работает по обратимому циклу Карно. Температура теплоотдатчика Т 1 = 500 К. Определить термический КПД цикла и температуру Т 2 теплоприёмника тепловой машины, если за счёт каждого килоджоуля теплоты, полученной от теплоотдатчика, машина совершает работу А= 350 Дж.

Зная КПД цикла, можно из формулы для КПД цикла Карно

найти температуру охладителя Т 2:

.

Вычисления :

Ответ: η=35%, Т 2 =325 К

Задача 3.8. Масса 10 г гелия находится при температуре 300 К. При изобарном нагревании его объем увеличился в 3 раза. Определить изменение внутренней энергии, работу газа и количество теплоты, сообщенное газу.

Для определения температуры T 2 воспользуемся законом Гей-Люссака для изобарического процесса

.

Работа газа при его расширении определяется выражением:

А = PDV = P(V 2 - V 1).

Воспользовавшись уравнением Менделеева-Клайперона, найдем разность объемов двух состояний газа (V 2 – V 1):

.

.

Для определения количества теплоты, сообщенной газу, воспользуемся первым законом термодинамики для изобарического процесса:

.

Вычисления:

3.3. Задачи для самостоятельного решения

201. В цилиндр длиной l = 1,6 м, заполненный воздухом при нормальном атмосферном давлении p 0 , начали медленно вдвигать поршень площадью основания S = 200 см 2 . Определить силу F , действующую на поршень, если его остановить на расстоянии l 1 = 10 см от дна цилиндра.

202. В баллоне находится газ при температуре Т 1 = 400 К. До какой температуры T 2 надо нагреть газ, чтобы его давление увеличилось в 1,5 раза.

203. Баллон вместимостью V = 20 л заполнен азотом при температуре T = 400 К. Когда часть газа израсходовали, давление в баллоне понизилось на Δp = 200 кПа. Определить массу m израсходованного газа. Процесс считать изотермическим.

204. В баллоне вместимостью V = 15 л находится аргон под давлением p 1 = 600 кПа и при температуре Т 1 = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до p 2 =400 кПа, а температура установилась T 2 = 260 К. Определить массу m аргона, взятого из баллона.

205. Два сосуда одинакового объема содержат кислород. В одном сосуде давление p 1 =2 МПа и температура T 1 = 800 К, в другом p 2 = 2,5 МПа, T 2 = 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры T = 200 К. Определить установившееся в сосудах давление p .

206. Вычислить плотность ρ азота, находящегося в баллоне под давлением p =2 МПа и имеющего температуру T = 400 К.

207. Определить относительную молекулярную массу M r газа, если при температуре Т = 154 К и давлении p = 2,8 МПа он имеет плотность ρ = 6,1 кг/м 3 .

208. Найти плотность ρ азота при температуре T = 400 К и давлении p = 2 МПа.

209. В сосуде объемом V = 40 л находится кислород при температуре Т = 300 К. Когда часть кислорода израсходовали, давление в баллоне понизилось на Δр = 100 кПа. Определить массу m израсходованного кислорода. Процесс считать изотермическим.

210. Определить плотность ρ водяного пара, находящегося под давлением p = 2,5 кПа и имеющего температуру Т = 250 К.

211. Определить внутреннюю энергию U водорода, а также среднюю кинетическую энергию <ε > молекулы этого газа при температуре T = 300 К, если количество вещества ν этого газа равно 0,5 моль.

212. Определить суммарную кинетическую энергию Е к поступательного движения всех молекул газа, находящегося в сосуде вместимостью V = 3 л под давлением p = 540 кПа.

213. Количество вещества гелия ν = 1,5 моль, температура T = 120 К. Определить суммарную кинетическую энергию Е к поступательного движения всех молекул этого газа.

214. Молярная внутренняя энергия U m некоторого двухатомного газа равна 6,02 кДж/моль. Определить среднюю кинетическую энергию <ε вр > вращательного движения одной молекулы этого газа. Газ считать идеальным.

215. Определить среднюю кинетическую энергию <ε > одной молекулы водяного пара при температуре Т = 500 К.

216. Определить среднюю квадратичную скорость <υ кв > молекулы газа, заключенного в сосуд вместимостью V = 2 л под давлением p = 200 кПа. Масса газа m = 0,3 г.

217. Водород находится при температуре T = 300 К. Найти среднюю кинетическую энергию <ε вр > вращательного движения одной молекулы, а также суммарную кинетическую энергию E к всех молекул этого газа; количество водорода ν = 0,5 моль.

218. При какой температуре средняя кинетическая энергия <ε п > поступательного движения молекулы газа равна 4,14·10 -21 Дж?

219. В азоте взвешены мельчайшие пылинки, которые движутся так, как если бы они были очень крупными молекулами. Масса каждой пылинки равна 6·10 -10 г. Газ находится при температуре T = 400 К. Определить средние квадратичные скорости <υ кв >, а также средние кинетические энергии <ε к > поступательного движения молекулы азота и пылинки.

220. Определить среднюю кинетическую энергию <ε к > поступательного движения и <ε вр > вращательного движения молекулы азота при температуре Т = 1 кК. Определить также полную кинетическую энергию Е к молекулы при тех же условиях.

221. Определить молярную массу М двухатомного газа и его удельные теплоемкости, если известно, что разность c p -c V удельных теплоемкостей этого газа равна 260 Дж/(кг·К).

222. Найти удельные c p и c V , а также молярные C p и C V теплоемкости углекислого газа.

223. Определить показатель адиабаты γ идеального газа, который при температуре T = 350 К и давлении p = 0,4 МПа занимает объем V = 300 л и имеет теплоемкость C V = 857 Дж/К.

224. В сосуде вместимостью V = 6 л находится при нормальных условиях двухатомный газ. Определить теплоемкость C V

225. Определить относительную молекулярную массу M r и молярную массу газа M , если разность его удельных теплоемкостей c p -c V = 2,08 кДж/(кг·К).

226. Определить молярные теплоемкости газа, если его удельные теплоемкости c V = 10,4 кДж/(кг·К) и c p = 14,6 кДж/(кг·К).

227. Найти удельные c V и c p и молярные C V и C p теплоемкости азота и гелия.

228. Вычислить удельные теплоемкости газа, зная, что его молярная масса M =4·10 -3 кг/моль и отношение теплоемкостей C p /C V = 1,67.

229. Трехатомный газ под давлением p =240 кПа и температуре t = 20° C занимает объем V = 10 л. Определить теплоемкость C p этого газа при постоянном давлении.

230. Одноатомный газ при нормальных условиях занимает объем V = 5 л. Вычислить теплоемкость C V этого газа при постоянном объеме.

231. Найти среднее число <z > столкновений за время t =1 с и длину свободного пробега <l > мо

МОЛЕКУЛЯРНАЯ ФИЗИКА

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

1. Основные положения молекулярно-кинетической теории, строение вещества с точки зрения МКТ.

2. Что называют атомом? Молекулой?

3. Что называют количеством вещества? Какова его единица (дайте определение)?

4. Что называют молярной массой молярным объемом?

5. Каким образом можно определить массу молекул; размер молекул.Какова примерно масса молекул и их размеры?

6. Опишите опыты, подтверждающие основные положения МКТ.

7. Что называется идеальным газом? Каким условиям он должен удовлетворять? При каких условиях реальный газ по своим свойствам близок к нему?

8. Запишите формулы для средней арифметической скорости, средней квадратичной скорости.

9. Что доказывают опыты по диффузии? Броуновскому движению? Объясните их на основе МКТ

10. Что доказывает опыт Штерна? Объясните на основе МКТ.

11. Выведите и сформулируйте основное уравнение МКТ. Какие допущения используют при выводе основного уравнения МКТ.

12. Что характеризует температура тела?

13. Формулировка и математическая запись законов Дальтона, Бойля ­ Мариотта, Гей­ Люссака, Шарля.

14. Какова физическая сущность абсолютного нуля температуры? Запишите связь абсолютной температуры с температурой по шкале Цельсия. Достижим ли абсолютный нуль, почему?

15. Как объяснить давление газов с точки зрения МКТ? От чего оно зависит?

16. Что показывает постоянная Авогадро? Чему равно ее значение?

17. Чему равно значение универсальной газовой постоянной?

18. Чему равно значение постоянной Больцмана?

19. Написать уравнение Менделеева – Клапейрона. Какие величины входят в формулу?

20. Написать уравнение Клапейрона. Какие величины входят в формулу?

21. Что называется парциональным давлением газа?

22. Что называется изопроцессом, какие изопроцессы знаете.

23. Понятие, определение, внутренняя энергия идеального газа.

24. Параметры газа. Вывод объединенного газового закона.

25. Вывод уравнения Менделеева-Клапейрона.

26. Что называется: молярной массой вещества, количеством вещества, относительной атомной массой вещества, плотностью, концентрацией, абсолютной температурой тела? В каких единицах они измеряются?



27. Давление газа. Единицы измерения давления в СИ. Формула. Приборы для измерения давления.

28. Опишите и объясните две температурные шкалы: термодинамическую и практическую.

30. Сформулируйте законы, описывающие все виды изопроцессов?

31. Начертите график зависимости плотности идеального газа от термодинамической температуры для изохорного процесса.

32. Начертите график зависимости плотности идеального газа от термодинамической температуры для изобарного процесса.

33. Чем отличается уравнение Клапейрона-Менделеева от уравнения Клапейрона?

34. Запишите формулу средней кинетической энергии идеального газа.

35. Средняя квадратичная скорость теплового движения молекул.

36. Средняя скорость хаотического движения молекул.

2. Частицы, из которых состоят вещества, называют молекулами. Частицы, из которых состоят молекулы, называют атомами.

3. Величина, которая определяет количество молекул в данном образце вещества, называется количеством вещества. один моль - это количество вещества, которое содержит столько же молекул, сколько атомов углерода содержится в 12 г углерода.

4. Моля́рная ма́сса вещества - масса одного моля вещества (г/моль) Моля́рный объём - объём одного моль вещества, величина, получающаяся от деления молярной массы на плотность.

5. Зная молярную массу, можно вычислить массу одной мо­лекулы: m0 = m/N = m/vNA = М/NA Диаметром молекулы принято считать мини­мальное расстояние, на которое им позволяют сбли­зиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер моле­кул порядка 10-10 м.

7. Идеальный газ – это модель реального газа, которая обладает следующими свойствами:
Молекулы пренебрежимо малы по сравнению со средним расстоянием между ними
Молекулы ведут себя подобно маленьким твердым шарикам: они упруго сталкиваются между собой и со стенками сосуда, никаких других взаимодействий между ними нет.

Молекулы находятся в непрекращающемся хаотическом движении. Все газы при не слишком высоких давлениях и при не слишком низких температурах близки по своим свойствам к идеальному газу. При высоких давлениях молекулы газа настолько сближаются, что пренебрегать их собственными размерами нельзя. При понижении температуры кинетическая энергия молекул уменьшается и становится сравнимой с их потенциальной энергией, следовательно, при низких температурах пренебрегать потенциальной энергией нельзя.

При высоких давлениях и низких температурах газ не может считаться идеальным. Такой газ называют реальным. (Поведение реального газа описывается законами, отличающимися от законов идеального газа.)

Средняя квадратичная скорость молекул - среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали:

Средняя квадратичная скорость молекул

Постоянная Больцмана

Температура

Масса одной молекулы

Универсальная газовая постоянная

Молярная масса

Количество вещества

Средняя кинетическая энергия молекул

Число Авогадро

Средняя арифметическая скорость молекул опр­деляется по формуле

где М - молярная масса вещества.

9. Броуновское движение. Однажды в 1827 г. английский ученый Р. Броун, изучая растения при помощи микроскопа, обнаружил очень необычное явление. Плавающие на воде споры (мелкие семена некоторых растений) скачкообразно двигались без видимых на то причин. Броун наблюдал это движение (см. рисунок) несколько дней, однако так и не смог дождаться его прекращения. Броун понял, что имеет дело с неизвестным науке явлением, поэтому он очень подробно его описал. Впоследствии это явление учёные-физики назвали по имени первооткрывателя – броуновским движением.

Объяснить броуновское движение невозможно, если не предположить, что молекулы воды находятся в беспорядочном, никогда не прекращающемся движении. Они сталкиваются друг с другом и с другими частицами. Наталкиваясь на споры, молекулы вызывают их скачкообразные перемещения, что Броун и наблюдал в микроскоп. А поскольку молекулы в микроскоп не видны, то движение спор и казалось Броуну беспричинным.

Диффузия

Как же объяснить ускорение этих явлений? Объяснение одно: повышение температуры тела приводит к увеличению скорости движения составляющих его частиц.

Итак, каковы же выводы из опытов?Самостоятельное движение частиц веществ наблюдается при любой температуре. Однако при повышении температуры движение частиц ускоряется, что приводит к возрастанию ихкинетической энергии . В результате эти более «энергичные» частицы ускоряют протекание диффузии, броуновского движения и других явлений, например растворения или испарения.

10. Опыт Штерна – опыт, в котором была экспериментально измерена скорость молекул. Было доказано, что разные молекулы в газе обладают разной скоростью, а при заданной температуре можно говорить о распределении молекул по скоростям и о средней скорости молекул.

Поставим перед собой задачу: пользуясь упрощенными представлениями о движении и взаимодействии газовых молекул, выразить давление газа через величины, характеризующие молекулу.

Рассмотрим газ, заключенный в сферическом объеме с радиусом и объемом Отвлекаясь от соударений газовых молекул, мы вправе принять следующую простую схему движения каждой молекулы.

Молекула движется прямолинейно и равномерно с некоторой скоростью ударяется о стенку сосуда и отскакивает от нее под углом, равным углу падения (рис. 83). Проходя все время хорды одинаковой длины молекула наносит стенке сосуда ударов за 1 с. При каждом ударе импульс молекулы меняется на (см. стр. 57). Изменение импульса за 1 с будет равно

Мы видим, что угол падения сократился. Если молекула падает на стенку под острым углом, то удары будут частые, но слабые; при падении под углом, близким к 90°, молекула будет наносить стенке удары реже, но зато сильнее.

Изменение импульса при каждом ударе молекулы о стенку дает свой вклад в общую силу давления газа. Можно принять в соответствии с основным законом механики, что сила давления есть не что

иное как изменение импульса всех молекул, происходящее за одну секунду: или, вынося постоянный член за скобки,

Пусть в газе содержится молекул, тогда можно ввести в рассмотрение средний квадрат скорости молекулы, который определяется формулой

Выражение для силы давления запишется теперь кратко:

Давление газа мы получим, разделив выражение силы на площадь сферы Получим

Заменяя на получим следующую интересную формулу:

Итак, давление газа пропорционально числу молекул газа и среднему значению кинетической энергии поступательного движения молекулы газа.

К важнейшему выводу мы приходим, сравнивая полученное уравнение с уравнением газового состояния. Сопоставление правых частей равенств показывает, что

т. е. средняя кинетическая энергия поступательного движения молекул зависит только от абсолютной температуры и притом прямо пропорциональна ей.

Проделанный вывод показывает, что газы, подчиняющиеся закону газового состояния, являются идеальными в том смысле, что приближаются к идеальной модели собрания частиц, взаимодействие которых не существенно. Далее, этот вывод показывает, что введенное эмпирическим путем понятие абсолютной температуры как величины, пропорциональной давлению разреженного газа, имеет простой молекулярно-кинетический смысл. Абсолютная температура пропорциональна кинетической энергии поступательного движения молекул. есть число Авогадро - число молекул в одной грамм-молекуле, оно является универсальной постоянной: Обратная величина будет равна массе атома водорода:

Универсальной является также величина

Она называется постоянной Больцмана Тогда

Если представить квадрат скорости через сумму квадратов составляющих, очевидно, на любую составляющую придется в среднем энергия

Эту величину называют энергией, приходящейся на одну степень свободы.

Универсальная газовая постоянная хорошо известна из опытов с газами. Определение числа Авогадро или постоянной Больцмана (выражающихся друг через друга) является относительно сложной задачей, требующей проведения тонких измерений.

Проделанный вывод дает в наше распоряжение полезные формулы, позволяющие вычислять средние скорости молекул и число молекул в единице объема.

Так, для среднего квадрата скорости получим

Средняя квадратичная скорость молекул - среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Таблица значений средней квадратичной скорости молекул некоторых газов

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

Где у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

Но средняя кинетическая энергия, так же находится, как:

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы, получается Молярная масса то у нас и получится формула для средней квадратичной скорости молекулы газа:

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали:

Средняя квадратичная скорость молекул

Постоянная Больцмана