Особенности проявления эффекта ребиндера в конденсированных полимерах. Внешний и внутренний эффекты ребиндера

Этот роман – «собранье пестрых глав», где каждая глава названа строкой из Пушкина и являет собой самостоятельный рассказ об одном из героев. А героев в романе немало – одаренный музыкант послевоенного времени, «милый бабник», и невзрачная примерная школьница середины 50-х, в душе которой горят невидимые миру страсти – зависть, ревность, запретная любовь; детдомовский парень, физик-атомщик, сын репрессированного комиссара и деревенская «погорелица», свидетельница ГУЛАГа, и многие, многие другие. Частные истории разрастаются в картину российской истории XX века, но роман не историческое полотно, а скорее многоплановая семейная сага, и чем дальше развивается повествование, тем более сплетаются судьбы героев вокруг загадочной семьи Катениных, потомков «того самого Катенина», друга Пушкина. Роман полон загадок и тайн, страстей и обид, любви и горьких потерь. И все чаще возникает аналогия с узко научным понятием «эффект Ребиндера» – как капля олова ломает гибкую стальную пластинку, так незначительное, на первый взгляд, событие полностью меняет и ломает конкретную человеческую жизнь.

«Новеллы, изящно нанизанные, словно бусины на нитку: каждая из них – отдельная повесть, но вдруг один сюжет перетекает в другой, и судьбы героев пересекаются самым неожиданным образом, нитка не рвётся. Всё повествование глубоко мелодично, оно пронизано музыкой – и любовью. Одних любовь балует всю жизнь, другие мучительно борются за неё. Одноклассники и влюблённые, родители и дети, прочное и нерушимое единство людей, основанное не на кровном родстве, а на любви и человеческой доброте, – и нитка сюжета, на которой прибавилось ещё несколько бусин, по-прежнему прочна… Так человеческие отношения выдерживают испытание сталинским временем, «оттепелью» и ханжеством «развитого социализма» с его пиком – Чернобыльской катастрофой. Нитка не рвётся, едва ли не вопреки закону Ребиндера».

Елена Катишонок, лауреат премии «Ясная поляна» и финалист «Русского Букера»

На нашем сайте вы можете скачать книгу "Эффект Ребиндера" Елена Минкина-Тайчер бесплатно и без регистрации в формате fb2, rtf, epub, pdf, txt, читать книгу онлайн или купить книгу в интернет-магазине.

A C p

1 C 1

p s (12.9)

где ps – давление насыщенного пара при данной температуре; давление пара.

p s - относительное

Уравнение изотермы полимолекулярной адсорбции БЭТ легко привести к линейной форме:

A (1

по которому можно построить линейную зависимость в координатах / от и определить константы С и А∞ .

Теория БЭТ, так же как и теория Ленгмюра, указывает путь для определения удельной поверхности адсорбента. Найдя А∞ для паров простых веществ при низких температурах и зная площадь, занимаемую молекулой адсорбтива, легко вычислить удельную поверхность адсорбента.

В качестве адсорбатов используют инертные газы (азот, аргон, криптон и др.), которые характеризуются слабым межмолекулярным взаимодействием на поверхности адсорбента, что находится в соответствии с исходными допущениями теории, а это обеспечивает достоверность получаемых результатов. Для увеличения адсорбции таких газов ее ведут при низких температурах, откуда и частое название метода БЭТ - метод низкотемпературной адсорбции.

13 Адсорбционное понижение прочности. Эффект Ребиндера

Многие технологические процессы начинаются с дробления и измельчения. Это одна из самых массовых и энергоемких операций современной технологии. Размалывают зерно, превращая его в муку, размалывают руду, уголь, горные породы, необходимые для производства цемента, стекла. Размалывают ежегодно миллиарды тонн сырья, затрачивая громадное количество электроэнергии.

Явление адсорбционного влияния среды на механические свойства и структуру твердых тел - эффект Ребиндера - было открыто академиком Петром Александровичем Ребиндером в 1928 году. Сущность этого явления состоит в облегчении деформирования и разрушения твердых тел и самопроизвольном протекании в них структурных изменений в результате понижения их свободной поверхностной энергии при контакте со средой, содержащей вещества, способные к адсорбции на межфазной поверхности. Многие явления, наблюдаемые в природе, технике и научно-исследовательской практике, имеют своей основой эффект Ребиндера.

В зависимости от химической природы твердого тела и среды, условий деформирования и разрушения структуры твердого тела эффект Ребиндера может проявляться в различных формах: адсорбционного пластифицирования (облегчения пластического деформирования), адсорбционного понижения прочности или самопроизвольного диспергирования структуры твердого тела. Несмотря на разнообразие форм проявления, можно выделить ряд общих особенностей, характерных для эффекта Ребиндера:

1) Действие сред весьма специфично: на каждый данный тип твердого тела действуют лишь некоторые определенные среды.

2) Изменение механических свойств твердых тел можно наблюдать сразу после установления контакта со средой.

3) Для проявления действия среды достаточно весьма малых ее количеств.

4) Эффект Ребиндера проявляется лишь при совместном действии среды и механических напряжений.

5) Наблюдается своеобразная обратимость эффекта: после удаления среды механические свойства исходного материала полностью восстанавливаются.

В этих особенностях состоит отличие эффекта Ребиндера от других возможных случаев влияния среды на механические свойства твердых тел, в частности, от процессов растворения и коррозии, когда разрушение тела под действием среды может происходить и в отсутствие механических напряжений. В последнем случае обычно необходимо воздействие значительных количеств агрессивной среды.

Адсорбционное понижение прочности (АПП) наблюдается в присутствии сред, вызывающих сильное снижение поверхностной энергии твердых тел. Наиболее сильные эффекты вызывают жидкие среды, близкие твердому телу по молекулярной природе. Так, для твердых материалов такими средами являются расплавы более легкоплавких металлов; для ионных кристаллов и оксидов - вода, растворы электролитов и солевые расплавы; для молекулярных неполярных кристаллов - углеводороды. Среди многочисленных сред одинаковой молекулярной природы значительное снижение прочности твердых тел часто вызывают вещества, образующие с твердым телом простую эвтектическую диаграмму с небольшой растворимостью в твердом состоянии; этому отвечает малая по величине положительная энергия смешения компонентов. В системах с малой интенсивностью взаимодействия компонентов (взаимной нерастворимостью), также как и в случае очень большого взаимного сродства, особенно если компоненты вступают в химическую реакцию, АПП обычно не наблюдается.

При хрупком разрушении связь прочности Р с поверхностной энергией описывается уравнением Гриффитса:

, (13.1)

где Е - модуль упругости твердого тела, l - характерный размер существующих в нем или возникающих при предварительном пластическом деформировании дефектов - зародышевых трещин разрушения. В соответствии с соотношением Гриффитса, справедливым в условиях хрупкого разрушения, отношение прочностей материала в присутствии P A и в отсутствие среды P 0 равно корню квадратному из отношения соответствующих поверхностных энергий: P A /P 0 =( A / 0 ) 1/2 . При разрушении твердых тел в присутствии смесей двух жидких компонентов, различающихся по адсорбционной активности, прочность снижается тем сильнее, чем выше концентрация более активного компонента, который преимущественно адсорбируется на поверхности разрушения.

Сопоставляя соотношение Гриффитса с адсорбционным уравнением Гиббса (при малых концентрациях) Г=-(RT) -1 d /dlnc можно непосредственно связать адсорбцию с прочностью P :

Эффект Ребиндера позволил снизить расходы энергии 20-30%, а также получить материалы сверхтонкого помола, например, цемент с особыми свойствами. Эффект Ребиндера используется и при механической обработке металла, когда в смазочноохлаждающую жидкость добавляется ПАВ, понижающие прочность в зоне действия резца. Поверхностно-активные вещества широко используются в пищевой промышленности: для

понижения прочности при дроблении зерна, для улучшения качества выпекаемого хлеба, замедления процесса его черствения; для уменьшения клейкости макаронных изделий, для повышения пластических свойств маргарина; в производстве мороженого; в производстве кондитерских изделий и т.д.

и K " n

D K n

При изучении процесса диспергирования установлено, что в частице при деформации развиваются микротрещины на основе дефектов кристаллической решетки. Среди этих микротрещин имеются и такие, широкие части которых выходят на поверхность тела, а тупики остаются внутри тела. Поверхностные микротрещины являются основной причиной понижения механической прочности реальных твердых тел по сравнению с их теоретической прочностью.

8.4.2. Эффект Ребиндера и его роль в диспергировании.

В 1928 г. П. А. Ребиндер высказал предположение о том, что в

основе понижения механических свойств твердых тел под влиянием поверхностно-активных веществ (ПАВ) лежит снижение свободной поверхностной энергии и, как следствие, уменьшение работы, необходимой для образования новых поверхностей.

Разрушение можно рассматривать как процесс образования новых поверхностей, следовательно, адсорбция ПАВ облегчает разрушение. Прочность твердого тела тем меньше, чем меньше поверхностная энергия. Поверхностную энергию можно уменьшить с помощью ПАВ. Существует выражение, устанавливающее связь прочности и поверхностной энергии для тела, имеющего дефект в виде микротрещины.

Рассмотрим твердое тело – пластину (рис. 8.3) единичной толщины, к которой приложено растягивающее напряжение P . В соответствии с законом Гука, упругая деформация тела приводит к накоплению в нем упругой энергии с плотностью, равной

W упр

где E - модуль Юнга. Пусть в теле возникает сплошная трещина длинной L . При этом в части объема происходит уменьшение упругой

Зависимость lg D (или lg ) от lg в соответствии с уравнением

D K n и K " n представляет собой прямую линию, тангенс угла наклона которой равен показателю степени n с минусом. Значение показателя n в этих уравнениях зависит от соотношения между размером частиц и длиной волны падающего света, характеризуемого параметром z .

Показатель степени n в уравнениях

находят на основе турбидиметрических данных. Для этого экспериментально измеряют оптическую плотность системы при различных длинах волн и строят график зависимости в координатах

lg D lg . Показатель

определяют

тангенсу

угла наклона

полученной прямой. По значению n

находят соответствующее

значение параметра

рассчитывают средний радиус частиц исследуемой дисперсной системы.

Следует отметить, что этот метод, как и уравнение Рэлея, применим только для «белых» золей, то есть для дисперсных систем, не поглощающих свет (метод базируется только на светорассеянии).

10.8. Световая микроскопия.

10.8.1. Световая микроскопия.

Светорассеяние и нефелометрия являются косвенными методами

измерения размера частиц, основанными на оптических свойствах дисперсных систем. Возникает вопрос, существуют ли прямые методы, то есть можно ли увидеть коллоидную частицу. При наблюдении системы в обычный микроскоп в проходящем свете

www.mitht.ru/e-library

Значение показателя степени n в этом уравнении в свою очередь зависит от z ; с увеличением z значение n уменьшается, стремясь в пределе к 2 для частиц, радиус которых

больше длины волны. При малых значениях z соблюдается уравнение Рэлея и при n 4 .

Исходя из теории Шифрина, можно определить размер частиц по характеристической мутности. Для этого измеряют значение оптической плотности D серии разбавленных растворов и вычисляют

мутность по уравнению:

С помощью графической экстраполяции находят значение характеристической мутности. Подставляя найденное значение также значение и в формулу (10.26), определяют значение (z)

и по таблице значение z . По уравнению (10.24) вычисляют радиус частицы.

С увеличением размеров частиц закон Рэлея перестает соблюдаться и интенсивность рассеянного света становится обратно пропорциональной длине волны в степени меньшей, чем четвертая. Если размер (диаметр) частиц составляет от 1/10 до 1/3 длины световой волны, и показатели преломления частиц и среды не сильно различаются, для описания светорассеяния в системе можно воспользоваться эмпирическим уравнением, предложенным Геллером:

D K n и K " n (10.29)

где K и K " – константы, не зависящие от длины волны.

деформации и соответственно уменьшение плотности упругой энергии. Можно приближенно считать, что подобная релаксация напряжений происходит в области размером порядка l (рис. 8.3), т. е. уменьшение запасенной в теле упругой энергии пропорционально квадрату размера трещины:

E упр

Рис. 8.3. Пластина единичной толщины под воздействием растягивающего

напряжения P .

При механическом диспергировании протекает обратный процесс - рекомбинация частиц, интенсивность которого увеличивается при увеличении степени дисперстности. Максимальный размер частиц,

который можно получить механическим измельчением - 1 10 6 м . Рекомбинацию частиц можно подавить, применяя инертный разбавитель. Так получают коллоидную серу дроблением ромбической серы с добавлением сахара как инертного разбавителя. К образующейся смеси коллоидной серы с сахаром добавляют воду и разделяют смесь с помощью диализа.

www.mitht.ru/e-library

Увеличение поверхностной энергии F пов пропорционально поверхностному натяжению и удвоенной длине трещин, так как трещина имеет два берега.

F пов ~ 2 l (8.8))

Вместе с тем рост трещины сопровождается увеличением поверхностной энергии вследствие образования новой поверхности раздела фаз с площадью, пропорциональной удвоенной длине трещины. Общее изменение энергии при образовании трещин равно сумме изменений упругой и поверхностной энергий:

P2 l 2

Графически зависимость изменения энергии от длины трещины изображается кривой с максимумом (рис. 8.5) .

Рис. 8.5. Зависимость изменения поверхностной энергии от длинны трещины.

Для частиц, размер которых не превышает 20 1 длины волны

падающего света, при условии отсутствия поглощения света и вторичного светорассеяния справедливо уравнение Рэлея.

Для частиц, размер которых равен длине световой волны или больше ее, определение размеров частиц по светорассеянию может быть осуществлено исходя из общей теории светорассеяния.

В случае, когда радиус составляет от одной десятой до одной третьей длины световой волны, и показатели преломления частиц и среды не слишком различаются (m 1,5 ), определение размеров частиц дисперсных систем проводят по методу К. С. Шифрина и И. Я. Слонима. Согласно этому методу, мутность зависит от параметров и z следующим образом:

а при С об 0

[τ ]

где – мутность системы, см-1 ; С об – объемная доля дисперсной фазы; – характеристическая мутность.

При z 2 (т. е. r 0,080 ) можно использовать уравнение Рэлея

(частицы видны в микроскоп).

Зависимость мутности от параметра z описывается уравнением

τ const

C об

www.mitht.ru/e-library

[ τ] lim

C об

С об 0

Весьма удобным объектом исследования оптических свойств коллоидных систем являются латексы, представляющие модель гидрофобных золей. Они являются двухфазными и трехкомпонентными системами, состоящими из полимерных частиц ультрамикроскопических размеров, взвешенных в серуме – водном растворе стабилизатора. В качестве стабилизатора применяют различные поверхностно-активные вещества (соли жирных и сульфокислот).

10.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.

Интенсивность света, рассеянного разбавленной дисперсной системой, а также угловое распределение рассеянного света (индикатрисса рассеяния) зависят от значений двух безразмерных параметров и z . Параметр характеризует отклонение свойств частицы от свойств среды и определяется уравнением

где m

Отношение

показателя

преломления дисперсной

фазы к показателю преломления дисперсионной среды.

Параметр z

характеризует отношение радиуса частицы r к длине

В точке максимума значение первой производной функции равно

0 , т. е.

2 dl

2P 2

Этому максимуму свободной энергии отвечает критический размер трещины, равный:

l кр ~

Трещины с размером, большим критического, неустойчивы и самопроизвольно увеличивают свои размеры, что приводит к образованию макроскопической трещины и разрушению тела. Трещины с размером, меньшим критического, должны стремиться уменьшить свои размеры (залечиваться).

Выражение (8.11) можно также представить в виде:

E 1/ 2

Согласно этому соотношению, полученному впервые Гриффитсом и названному его именем. Реальная прочность P 0 твердого тела,

имеющего трещину с размером l , пропорциональна корню квадратному из величины поверхностной энергии и обратно пропорциональна корню квадратному из длины трещины. «Теоретическая» прочность идеального тела равна

где b – размер молекул. Уравнение Гриффитса может быть также представлено в виде

www.mitht.ru/e-library

Таким образом, отношение реальной и идеальной прочности твердого тела определяется соотношением между размером молекул b и размером дефекта.

Таким образом, анализ взаимосвязи механических свойств и поверхностной энергии показывает, что, изменяя величину поверхностной энергии, можно влиять на прочность материалов. Развитие микротрещин под действием внешних сил может быть облегчено адсорбцией различных веществ на поверхности тела из среды, в которой проводят диспергирование.

Адсорбироваться могут ионы электролитов, молекулы поверхностно-активных веществ, жидкие металлы (например, ртуть). На поверхности образуется двухмерный газ. Адсорбированные ионы или молекулы проникают в щели и стремятся раздвинуть микротрещины. Происходит также экранирование сил сцепления, действующих между поверхностями микротрещин. Адсорбированное понижение прочности получило название эффекта Ребиндера . Вещества, повышающие эффективность диспергирования, называются понизителями твердости. Этот эффект имеет большое практическое значение не только в процессах собственно диспергирования, но и в процессах бурения твердых пород, при тонкой обработке металлов.

Понизители твердости могут быть введены в диспергирующее устройство в виде паров, жидкости. Этот способ широко применяется при получении высокодисперсного цемента.

К эффективным методам относятся механическое дисперигирование, основанное на применении вибрационных методов (воздействие колебаний достаточно высокой частоты и малой

Запишем уравнение в общем виде:

I пр I 0 e k c l

I пр

e k c l

e τ l

Выразим

через оптическую плотность:

I пр

Для дисперсных систем со сферическими частицами уравнение Рэлея можно записать в таком виде:

I расс

24 π3

τ λ 4

С об V

n2 2 n2

где I расс -

полная интенсивность

света, рассеянного 1 см3

системы; С об – объемная доля дисперсной фазы; V– объем частицы, см3 .

Отсюда можно вычислить объем частиц:

где K

2 n2

Уравнение Рэлея справедливо лишь для разбавленных растворов, так как оно не учитывает вторичного рассеяния света и взаимодействия между частицами. Поэтому для определения размера частиц следует найти для ряда растворов с разной кратностью разбавления и экстраполировать величину / C об до С об 0 .

В отличие от рассмотренного случая «газ - твердое тело», адсорбция жидкостей сильно усложняется наличием третьего компонента - растворителя, молекулы которого могут также адсорбироваться на поверхности адсорбента и, следовательно, являются конкурентами молекул адсорбата. Таким образом, адсорбция этого вида всегда является адсорбцией из смеси. Кроме этого, адсорбция на границе «твердое тело-раствор» всегда осложняется взаимодействием молекул адсорбтива с молекулами среды. При рассмотрении адсорбции из раствора на твердом теле принято различать два случая.

    Адсорбция неэлектролитов или молекулярная адсорбция.

    Адсорбция электролитов.

Зависимость молекулярной равновесной адсорбции из раствора на твердое тело характеризуется обычной изотермой адсорбции, а для достаточно разбавленных растворов хорошо описывается эмпирическим уравнением Фрейндлиха-Ленгмюра–Либиха . Использование уравнений Ленгмюра и Гиббса затруднено из-за сложности определения поверхностного натяжения.

При адсорбции из раствора молекулы адсорбата и среды являются конкурентами. И чем хуже адсорбируется среда, тем лучше адсорбируется адсорбат. Исходя из того, что поверхностное натяжение для ПАВ мало, можно считать, что чем больше поверхностное натяжение самой среды, тем меньше ее молекулы способны к адсорбции. Поэтому адсорбция на твердом теле обычно лучше идет из водных растворов и хуже из растворов органических веществ, имеющих относительно небольшое поверхностное натяжение. При адсорбции также выполняется правило Траубе : с увеличением цепи адсорбата в гомологическом ряду конкурентная адсорбция идет в сторону того адсорбата, который обладает большей молекулярной массой.

С увеличением длины молекул адсорбата выше определенного критического значения из-за невозможности молекулы адсорбата проникнуть внутрь пор адсорбция с увеличением молекулярной массы адсорбтива падает.

Правило выравнивания полярностей Ребиндера : вещество может адсорбироваться на поверхности раздела фаз в том случае, если его адсорбция приводит к выравниванию полярностей этих фаз, т.е по полярности это вещество должно занимать промежуточное положение между веществами, составляющими эти фазы .

Если надо провести адсорбцию компонента из жидкой фазы, необходимо, чтобы полярность адсорбента и раствора резко отличались друг от друга. Чем хуже растворимо вещество в растворителе, тем лучше оно будет адсорбироваться.

Критерием пригодности растворителя в качестве среды для адсорбции является теплота смачивания этим растворителем адсорбента. Разность полярностей на второй границе раздела всегда меньше, чем на первой, поэтому Е 1 > E 2 и Q >0 . Чем больше Q , тем интенсивнее взаимодействие растворителя с адсорбентом и тем, следовательно, худшей средой для адсорбции он является.

Глава 2.4 Адгезия. Когезия. Смачивание и растекание жидкости

Тема 2.4.1. Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы . Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии , смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: W k =2  , где W k - работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогеннойфазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения. Адгезия - результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: W s = W a S

Адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м 2 .

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение  23 . В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + W a =0, W a = - G .

Изменение энергии Гиббса системы в процессе адгезии:

;

G нач . = 31 + 21 ;

G кон =  23 ;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что W k =2 , и умножая правую часть на дробь , получим:

где W k 2, W k 3 - работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность W п .

W п работа, затраченная на разрушение адгезионного соединения . Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей W a , так и работа, затраченная на деформацию компонентов адгезионного соединения W деф :

W п = W a + W деф .

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия. Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна  31 . Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно  21 . Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости . При равновесии устанавливается следующее соотношение

- закон Юнга .

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания
. Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 108 0). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, W a = W k .

2. При = 90 0 cos = 0, W a = W k /2 .

3. При =180 0 cos = -1, W a =0 .

Последнее соотношение не реализуется.