Факторы от которых зависит скорость химических реакций. Скорость реакции, ее зависимость от различных факторов

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

На скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС + dD, где k – константа скорости реакции

ЗДМ выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакций

  • Зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное железо высыпают на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.

Влияние температуры на скорость реакции

В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 о С скорости многих реакций возрастают в 2-4 раза.

Правило Вант-Гоффа

При повышении температуры на каждые 10 ◦ С скорость реакции увеличивается в 2-4 раза.

Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Чем больше E a конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер E a .

Влияние катализатора на скорость реакции

Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.

Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными качественно и количественно.

Ингибиторы – вещества, замедляющие химические реакции.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом .

Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетики – закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.

Механизмы протекания химических превращений и их скорости изучает химическая кинетика. Химические процессы протекают во времени с различными скоростями. Какие-то происходят быстро, почти мгновенно, для протекания других требуется весьма продолжительное время.

Вконтакте

Скорость реакции - скорость с которой расходуются реагенты (их концентрация уменьшается) или образуются продукты реакции в единице объёма.

Факторы, способные влиять на скорость химической реакции

На то, насколько быстро будет происходить химическое взаимодействие, могут повлиять следующие факторы:

  • концентрация веществ;
  • природа реагентов;
  • температура;
  • присутствие катализатора;
  • давление (для реакций в газовой среде).

Таким образом, изменяя определённые условия протекания химического процесса, можно повлиять на то, насколько быстро будет протекать процесс.

В процессе химического взаимодействия частицы реагирующих веществ сталкиваются друг с другом. Количество таких совпадений пропорционально числу частиц веществ в объёме реагирующей смеси, а значит и пропорционально молярным концентрациям реагентов.

Закон действующих масс описывает зависимость скорости реакции от молярных концентраций веществ, вступающих во взаимодействие.

Для элементарной реакции (А + В → …) данный закон выражается формулой:

υ = k ∙С A ∙С B,

где k - константа скорости; С A и С B - молярные концентрации реагентов, А и В.

Если одно из реагирующих веществ находится в твёрдом состоянии, то взаимодействие происходит на поверхности раздела фаз, в связи с этим концентрация твёрдого вещества не включается в уравнение кинетического закона действующих масс. Для понимания физического смысла константы скорости, необходимо принять С, А и С В равными 1. Тогда становится понятно, что константа скорости равна скорости реакции при концентрациях реагентов, равных единице.

Природа реагентов

Так как в процессе взаимодействия разрушаются химические связи реагирующих веществ и образуются новые связи продуктов реакции, то большую роль будет играть характер связей, участвующих в реакции соединений и строение молекул реагирующих веществ.

Площадь поверхности соприкосновения реагентов

Такая характеристика, как площадь поверхности соприкосновения твёрдых реагентов, на протекание реакции влияет, порой, довольно значительно. Измельчение твёрдого вещества позволяет увеличить площадь поверхности соприкосновения реагентов, а значит и ускорить протекание процесса. Площадь соприкосновения растворимых веществ легко увеличивается растворением вещества.

Температура реакции

При увеличении температуры энергия сталкивающихся частиц возрастёт, очевидно, что с ростом температуры и сам химический процесс будет ускоряться. Наглядным примером того, как увеличение температуры влияет на процесс взаимодействия веществ, можно считать приведённые в таблице данные.

Таблица 1. Влияние изменения температуры на скорость образования воды (О 2 +2Н 2 →2Н 2 О)

Для количественного описания того, как температура может влиять на скорость взаимодействия веществ используют правило Вант-Гоффа. Правило Вант-Гоффа состоит в том, что при повышении температуры на 10 градусов, происходит ускорение в 2−4 раза.

Математическая формула, описывающая правило Вант-Гоффа, выглядит следующим образом:

Где γ — температурный коэффициент скорости химической реакции (γ = 2−4).

Но гораздо более точно описывает температурную зависимость константы скорости уравнение Аррениуса:

Где R - универсальная газовая постоянная, А - множитель, определяемый видом реакции, Е, А - энергия активации.

Энергией активации называют такую энергию, которую должна приобрести молекула, чтобы произошло химическое превращение. То есть она является неким энергетическим барьером, который необходимо будет преодолеть сталкивающимся в реакционном объёме молекулам для перераспределения связей.

Энергия активации не зависит от внешних факторов, а зависит от природы вещества. Значение энергии активации до 40 - 50 кДж/моль позволяет веществам реагировать друг с другом довольно активно. Если же энергия активации превышает 120 кДж/моль , то вещества (при обычных температурах) будут реагировать очень медленно. Изменение температуры приводит к изменению количества активных молекул, то есть молекул, достигших энергии большей, чем энергия активации, а значит способных к химическим превращениям.

Действие катализатора

Катализатором называют вещество, способное ускорять процесс, но не входящее в состав его продуктов. Катализ (ускорение протекания химического превращения) разделяют на · гомогенный, · гетерогенный. Если реагенты и катализатор находятся в одинаковых агрегатных состояниях, то катализ называют гомогенным, если в различных, то гетерогенным. Механизмы действия катализаторов разнообразны и достаточно сложны. Кроме того, стоит отметить, что для катализаторов характерна избирательность действия. То есть один и тот же катализатор, ускоряя одну реакцию, может никак не изменять скорость другой.

Давление

Если в превращении участвуют газообразные вещества, то на скорость протекания процесса будет влиять изменение давления в системе. Это происходит потому , что для газообразных реагентов изменение давления приводит к изменению концентрации.

Экспериментальное определение скорости химической реакции

Определить быстроту протекания химического превращения экспериментально можно, получив данные о том, как в единицу времени меняется концентрация веществ, вступающих в реакцию, или продуктов. Методы получения таких данных делят на

  • химические,
  • физико-химические.

Химические методы достаточно просты, доступны и точны. С их помощью скорость определяют, непосредственно замеряя концентрацию или количество вещества реагентов или продуктов. В случае медленной реакции, для контроля за тем, как расходуется реагент отбирают пробы. После чего определяют содержание в пробе реагента. Осуществляя отбор проб через равные промежутки времени, можно получить данные об изменении количества вещества в процессе взаимодействия. Чаще всего используют такие виды анализа, как титриметрия и гравиметрия.

Если реакция протекает быстро, то чтобы отобрать пробу, её приходится останавливать. Это можно сделать с помощью охлаждения, резкого удаления катализатора , также можно произвести разбавление либо перевести один из реагентов в не реакционноспособное состояние.

Методы физико-химического анализа в современной экспериментальной кинетике используются чаще, чем химические. С их помощью можно наблюдать изменение концентраций веществ в реальном времени. При этом реакцию нет необходимости останавливать и отбирать пробы.

Физико-химические методы основываются на измерении физического свойства, зависящего от количественного содержания в системе определённого соединения и изменяющегося со временем. Например, если в реакции участвуют газы, то таким свойством может быть давление. Также измеряют электропроводность, показатель преломления, спектры поглощения веществ.

§ 12. КИНЕТИКА ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ

Кинетика ферментативных реакций – наука о скоростях ферментативных реакций, их зависимости от различных факторов. Скорость ферментативной реакции определяется химическим количеством прореагировавшего субстрата или образовавшегося продукта реакции в единицу времени в единице объема при определенных условиях:

где v – скорость ферментативной реакции, – изменение концентрации субстрата или продукта реакции, t – время.

Скорость ферментативной реакции зависит от природы фермента, которая определяет его активность. Чем выше активность фермента, тем выше скорость реакции. Активность фермента определяют по скорости реакции, катализируемой ферментом. Мерой активности фермента является одна стандартная единица активности фермента. Одна стандартная единица активности фермента – это такое количество фермента, которое катализирует превращение 1 мкмоль субстрата за 1 минуту.

В процессе ферментативной реакции фермент (Е) взаимодействует с субстратом (S), в результате образуется фермент-субстратный комплекс, который затем распадается с высвобождением фермента и продукта (Р) реакции:

Скорость ферментативной реакции зависит от многих факторов: от концентрации субстрата и фермента, температуры, рН среды, наличия различных регуляторных веществ, способных увеличивать или снижать активность ферментов.

Интересно знать! Ферменты используются в медицине для диагностики различных заболеваний. При инфаркте миокарда вследствие повреждения и распада сердечной мышцы в крови резко возрастает содержание ферментов аспартаттрансаминазы и аланинаминотрансферазы. Выявление их активности позволяет диагностировать данное заболевание.

Влияние концентрации субстрата и фермента на скорость ферментативной реакции

Рассмотрим влияние концентрации субстрата на скорость ферментативной реакции (рис. 30.). При низких концентрациях субстрата скорость прямо пропорциональна его концентрации, далее с ростом концентрации скорость реакции увеличивается медленнее, а при очень высоких концентрациях субстрата скорость практически не зависит от его концентрации и достигает своего максимального значения (V max). При таких концентрациях субстрата все молекулы фермента находятся в составе фермент-субстратного комплекса, и достигается полное насыщение активных центров фермента, именно поэтому скорость реакции в этом случае практически не зависит от концентрации субстрата.

Рис. 30. Зависимость скорости ферментативной реакции от концентрации субстрата

График зависимости активности фермента от концентрации субстрата описывается уравнением Михаэлиса – Ментен, которое получило свое название в честь выдающихся ученых Л.Михаэлиса и М.Ментен, внесших большой вклад в исследование кинетики ферментативных реакций,

где v – скорость ферментативной реакции; [S] – концентрация субстрата; K M – константа Михаэлиса.

Рассмотрим физический смысл константы Михаэлиса. При условии, что v = ½ V max , получаем K M = [S]. Таким образом, константа Михаэлиса равна концентрации субстрата, при которой скорость реакции равна половине максимальной.

Скорость ферментативной реакции зависит и от концентрации фермента (рис. 31). Эта зависимость носит прямолинейный характер.

Рис. 31. Зависимость скорости ферментативной реакции от концентрации фермента

Влияние температуры на скорость ферментативной реакции

Зависимость скорости ферментативной реакции от температуры представлена на рис. 32.

Рис. 32. Зависимость скорости ферментативной реакции от температуры.

При низких температурах (приблизительно до 40 – 50 о С) повышение температуры на каждые 10 о С в соответствии с правилом Вант-Гоффа сопровождается увеличением скорости химической реакции в 2 – 4 раза. При высоких температурах более 55 – 60 о С активность фермента резко снижается из-за его тепловой денатурации, и, как следствие этого, наблюдается резкое снижение скорости ферментативной реакции. Максимальная активность ферментов наблюдается обычно в пределах 40 – 60 о С. Температура, при которой активность фермента максимальна, называется температурным оптимумом. Температурный оптимум ферментов термофильных микроорганизмов находится в области более высоких температур.

Влияние рН на скорость ферментативной реакции

График зависимости ферментативной активности от рН представлен на рис. 33.

Рис. 33. Влияние рН на скорость ферментативной реакции

График зависимости от рН имеет колоколообразную форму. Значение рН, при котором активность фермента максимальна, называется рН-оптимумом фермента. Значения рН-оптимума для различных ферментов колеблются в широких пределах.

Характер зависимости ферментативной реакции от рН определяется тем, что этот показатель оказывает влияние на:

a) ионизацию аминокислотных остатков, участвующих в катализе,

b) ионизацию субстрата,

c) конформацию фермента и его активного центра.

Ингибирование ферментов

Скорость ферментативной реакции может быть снижена действием ряда химических веществ, называемых ингибиторами . Некоторые ингибиторы являются для человека ядами, например, цианиды, другие – используются в качестве лекарственных препаратов.

Ингибиторы можно разделить на два основных типа: необратимые и обратимые . Необратимые ингибиторы (I) связываются с ферментом с образованием комплекса, диссоциация которого с восстановлением активности фермента невозможна:

Примером необратимого ингибитора является диизопропилфторфосфат (ДФФ). ДФФ ингибирует фермент ацетилхолинэстеразу, играющего важную роль в передаче нервного импульса. Этот ингибитор взаимодействует с серином активного центра фермента, блокируя тем самым активность последнего. Вследствие этого нарушается способность отростков нервных клеток нейронов проводить нервный импульс. ДФФ является одним из первых веществ нервно-паралитического действия. На его основе создан ряд относительно нетоксичных для человека и животных инсектицидов - веществ, ядовитых для насекомых.

Обратимые ингибиторы, в отличие от необратимых, при определенных условиях могут быть легко отделены от фермента. Активность последнего при этом восстанавливается:

Среди обратимых ингибиторов выделяют конкурентные и неконкурентные ингибиторы.

Конкурентный ингибитор, являясь структурным аналогом субстрата, взаимодействует с активным центром фермента и таким образом перекрывает доступ субстрата к ферменту. При этом ингибитор не подвергается химическим превращениям и связывается с ферментом обратимо. После диссоциации комплекса EI фермент может связаться либо с субстратом и преобразовать его, либо с ингибитором (рис. 34.). Поскольку и субстрат и ингибитор конкурируют за место в активном центре, такое ингибирование называется конкурентным.

Рис. 34. Механизм действия конкурентного ингибитора.

Конкурентные ингибиторы используются в медицине. Для борьбы с инфекционными болезнями ранее широко применялись сульфаниламидные препараты. Они близки по своей структуре к пара-аминобензойной кислоте (ПАБК), необходимому фактору роста многих патогенных бактерий. ПАБК является предшественником фолиевой кислоты, которая служит кофактором ряда ферментов. Сульфаниламидные препараты выступают в качестве конкурентного ингибитора ферментов синтеза фолиевой кислоты из ПАБК и тем самым подавляют рост и размножение патогенных бактерий.

Неконкурентные ингибиторы по структуре не сходны с субстратом и при образовании EI взаимодействуют не с активным центром, а с другим участком фермента. Взаимодействие ингибитора с ферментом приводит к изменению структуры последнего. Образование EI-комплекса является обратимым, поэтому после его распада фермент вновь способен атаковать субстрат (рис. 35).

Рис. 35. Механизм действия неконкурентного ингибитора

В качестве неконкурентного ингибитора может выступать цианид CN - . Он связывается с ионами металлов, входящими в состав простетических групп и подавляет активность этих ферментов. Отравления цианидами крайне опасны. Они могут привести к летальному исходу.

Аллостерические ферменты

Термин «аллостерический» происходит от греческих слов allo – другой, stereo – участок. Таким образом, аллостерические ферменты наряду с активным центром имеют другой центр, называемый аллостерический центр (рис. 36). С аллостерическим центром связываются вещества, способные изменять активность ферментов, эти вещества называют аллостерическими эффекторами . Эффекторы бывают положительными – активирующими фермент, и отрицательными – ингибирующими, т.е. снижающими активность фермента. Некоторые аллостерические ферменты могут подвергаться действию двух и более эффекторов.

Рис. 36. Структура аллостерического фермента.

Регуляция мультиферментных систем

Некоторые ферменты действуют согласованно, объединяясь в мультиферментные системы, в которых каждый фермент катализирует определенную стадию метаболитического пути:

В мультиферментной системе есть фермент, который определяет скорость всей последовательности реакций. Этот фермент, как правило, бывает аллостерическим и находится в начале матаболитического пути. Он способен, получая различные сигналы, как повышать, так и понижать скорость катализируемой реакции, тем самым регулируя скорость всего процесса.