Строение гафния. В каких бытовых устройствах применяется гафний

Ознакомление с данной статьей позволит читателю узнать, что представляет собой гафний (химический элемент), применение которого широко используется человеком во множестве областей его деятельности. А также будут рассмотрены свойства химической и физической природы вещества, способы добычи и нахождение на планете, будет рассмотрена краткая история открытия этого элемента.

Что такое гафний

Гафний - химический элемент таблицы Менделеева. Находится в четвертой группе, шестом периоде, атомный номер равен семидесяти двум. Относится к простому типу веществ, имеет высокую плотность и тугоплавкость, цвет метала серебристо-белый. Гафний может существовать в двух модификациях. Под воздействием температуры около 2016 Кельвинов решетка гексагонального типа, претерпев аллотропические изменения, переходит в состояние объемноцентрированной решетки кубической формы, при комнатных температурах имеет кристаллическую решетку гексагональной сингонии.

Из истории открытия элемента

Открытие элемента произошло в 1923, совершили его Дьердь де Хешеви и Костер Дирк. Они смогли предсказать валентность и различные качественные характеристики гафния, основываясь на умозаключениях Н. Бора, который, в свою очередь, анализировал работу француза Ж. Урбена, считавшего, что он открыл кельтий - новый элемент. Однако позднее оказалось, что кельтием была смесь малого количества гафния с лютецием и иттербием.

Нильс Бор, изучая эту работу и используя в своей деятельности квантовомеханические расчеты, доказал, что гафний является аналогом элемента под номером 71 в ПТХЭ, а именно циркония. Дьердь де Хешеви и Костер Дирк заявили о нахождении нового элемента гафния, названного в честь города, в котором было совершено открытие, после того как, используя рентгеноспектральный метод, многократно проанализировали цирконы Норвегии и Гренландии. Обнаружение сходства линий рентгенограммы позволило ученым объявить об обнаружении нового х-ского элемента.

Способы получения и мировые запасы

Гафний находится в коре земли, но не имеет собственного минерала, а потому он является «спутником» циркония. Количество Hf в рудах около 2.5%, и годовая добыча составляет около семидесяти тонн. Гафний - довольно дорогое вещество, его основные места нахождения сосредоточены в Австралии, ЮАР, США, Индии и Бразилии. Расположение стран в поочередности перечисления соответствует местам по количеству наличия Hf в стране. Стоит также упомянуть, что Россия и Украина имеют довольно большие запасы этого металла, основное количество которого сосредоточено в циркономе, лопарите и бадделеите.

Физическая характеристика

Часть физических свойств гафния была упомянута выше. К ним можно добавить, что этот металл, который, принимая мелкодисперсное состояние, становится практически черным. Плавится при 2233 градусов по Цельсию, кипение начинается при 4603 о С. Сечение для захвата нейтронов теплового типа очень высокое. Цирконий, в отличие от гафния, имеет уровень сечения на три порядка слабее. В то время как захват Hf равен 115 барам, у циркония он всего около 0.2 бар. Гафний имеет аналогичный уровень теплоемкости германия (Ge) и является аномальным. Пик теплоемкости находится на уровне 60-80 Кельвинов. Это невозможно объяснить ни одной теорией, связанной с гуковскими силами, что обусловлено неспособностью функции эйнштейновской суперпозиции предоставить кривую с максимумом.

Химические свойства

Гафний имеет х-скую стойкость гораздо сильнее, чем у аналогичного циркония. Сам металл имеет довольно большую инертность, что связано с пленкой оксидов пассивного типа, которая образуется на гафние. Лучше всего Hf растворяется в фтороводородной кислоте, смеси фтороводородной кислоты с азотной кислотой и в царской водке. При высоких температурах сгорает в кислороде, а на открытом воздухе начинает окисляться. Может вступать в х-ские реакции с галогенами. Обладает характера.

Соединения двух- трех- и четырехвалентного Hf

У данного элемента значение валентности является переменным и, в соответствии с различными величинами количества возможных х-ских связей, существуют несколько важнейших соединений гафния с другими веществами.

Двухвалентный дибромид гафния имеет темно-зеленый цвет. При температуре 400 градусов по Цельсию начинает процесс разложения с образованием Hf и HfBr4. В промышленности добывают диспропорционированием в вакууме HfBr3 под термическим воздействием.

Трехвалентный Hf представлен трибромидом (HfBr3) - это вещество черно-синего цвета, довольно твердое. Под воздействием температуры, равной 400 градусам по Цельсию, начинает диспропорционировать на два компонента тетрабромбиты гафния и дибромбиды. Способ получения заключается в восстановлении HfBr4 путем нагревания в водороде, возможно с добавлением алюминия.

К соединениям четырехвалентного гафния относится довольно большое количество соединений, а именно HfO2 - его диоксид, а также гидроксид с х-ской формулой Hf(OH)4. Тут же находятся третрахлорид (HfCl4), тетрафторид (HfF4), тетраиодид (HfI4) и вышеупомянутый тетрабомид гафния (HfBr), еще есть гидрофосфаты гафния (Hf(HPO4)2).

Применение в быту и связь с медициной

Гафний применение свое находит во множестве сфер деятельности людского рода. Это связано с множеством качественных которые делают его незаменимым материалом, веществом во множестве отраслей промысла человека, военном деле и даже в ядерной промышленности.

Так как же используется гафний? Применение в медицине - это один из множества вариантов, где можно задействовать свойства этого металла. Так как карбиды Hf сверхпрочные, практически не подвергающиеся коррозии, они могут использоваться для изготовления режущих предметов, используемых врачами, также их используют при изготовлении рентгеновского зеркала.

Элемент с исключительными свойствами как химической, так и физической природы - это гафний. Применение в быту он находит в качестве материала при изготовлении радиотехники, радиоламп и телевизионных трубок. Его широко используют в металлургической промышленности с целью придания другим металлам более качественных физико-технических и механических свойств. Гафний применение также находит в х-ском машиностроении, но используется редко в силу своего дефицита и более важных способов применения.

Использование гафния в военном ремесле

Каким образом еще можно использовать гафний? Применение в вооружении - это очередная сфера деятельности человека, в которой не обходится без этого элемента. Окиси, силициды, бориды и карбиды гафния являются чрезвычайно тугоплавкими соединениями, по этой причине в военном ремесле их можно использовать в качестве защитного покрытия. Он также является чрезвычайно сверхжаропрочным, что позволяет использовать Hf и его соединения для производства деталей, предназначенных сверхскоростным самолетам и ракетам, включая космические.

Начиная с 1998 года совершались попытки создать «гафниевую бомбу», базирующуюся на изомере 187m2Hf. Но в результате исследований и испытаний идея оказалась несостоятельной, это связано с отсутствием возможности при нынешних технологиях добиться высвобождения избыточного вида энергии из ядра данного изомера.

Другие области применения простого вещества Hf

В атомной энергетике, наряду с вышеупомянутыми сферами, но даже в еще большем количестве, также используют гафний. Где применяется этот металл? Из-за его способности к нейтронному захвату из Hf изготавливают стержни для регуляции, специализированное стекло и керамику.

У гафния относительно низкий показатель работы электронного выхода (3,53эВ) и по этой причине его могут использовать при производстве катодов и электронных пушек. В ядерных реактивных газофазных двигателях можно найти бориды и карбиды гафния, а точнее в некоторых структурных элементах.

Гафний применение находит даже при изготовлении электрогенераторов термоэмиссионного типа и часто встречается в ионных двигателях. На основе HfO2 создаются диэлектрики, имеющие высокий уровень диэлектрической проницаемости. В будущем планируется замена привычного всем оксид кремния в микроэлектронике на оксид HfO2. Эта замена позволит повысить показатель плотности элементов в чипе.

В заключение можно сказать, что гафний, применение которого имеет место во множестве отраслей человеческой деятельности, начиная повседневной и заканчивая военной и атомной, является чрезвычайно важным элементом. Это очень востребованный металл и в природе всегда сопутствует цирконию. Редкость и его особенности качественных характеристик обусловливают довольно высокую стоимость.

Гафний – элемент молодой. Человечество знакомо с ним немного больше 50 лет. К началу 20-х годов нашего столетия из 89 существующих в природе элементов оставались неоткрытыми только три – и среди них элемент №72, будущий гафний.

Элементы периодической системы с очень близкими химическими свойствами называют аналогами. Наиболее ярким примером химической аналогии элементов может служить сходство циркония и гафния. До сих пор не найдено реакции, в которую вступал бы один из них и не вступал другой. Это объясняется тем, что у гафния и циркония одинаково построены внешние электронные оболочки. И, кроме того, почти одинаковы размеры их атомов и ионов. Цирконий был открыт еще в XVIII в., а гафний настолько удачно маскировался под цирконий, что в течение полутора веков ученые, исследовавшие минералы циркония и продукты их переработки, даже не подозревали, что фактически имеют дело с двумя элементами. Правда, в XIX в. было опубликовано несколько сообщений об открытии в минералах циркония неизвестных элементов: острания (Брейтхаупт, 1825), нория (Сванберг, 1845), джаргония (Сорби, 1869), нигрия (Чарч, 1869), эвксения (Гофман и Прандтль, 1901). Однако ни одной из этих «заявок» не подтвердили контрольные опыты.

Кельтий и гафний

Д. И. Менделеев предвидел будущее открытие элемента с порядковым номером 72. Но описать его свойства с той же обстоятельностью, как свойства тоже еще не открытых скандия, германия и галлия, Менделеев не мог. Стройность периодической системы необъяснимо нарушали лантан и следующие за ним элементы. Позже Богуслав Браунер, выдающийся чешский химик, друг и сподвижник Менделеева, предложил выделить 14 лантаноидов в самостоятельный ряд, а в основном «тексте» таблицы поместить их все в клетку лантана. В 1907 г. был открыт самый тяжелый лантаноид – лютеций. Впрочем, уверенности в том, что лютеций – последний и самый тяжелый из редкоземельных элементов, у большинства химиков не было.

Систематические поиски элемента №72 начались лишь в XX в.

В 1911 г. Жорж Урбен сообщил об открытии нового элемента в рудах редких земель. В честь некогда населявших территорию Франции древних племен кельтов он назвал новый элемент кельтием. В 1922 г. Довилье, тоже француз, исследуя смесь редких земель, применил усовершенствованные методы рентгенографического анализа. Заметив в спектре две новые линии, Довилье решил, что эти линии принадлежат элементу с порядковым номером 72, и кельтий признали пятнадцатым лантаноидом.

Но радость открытия была недолгой.

К этому времени электронная модель атома была разработана уже настолько, что на ее основе Нильс Бор смог объяснить периодичность строения атомов, объяснить особенности и порядок размещения элементов в периодической системе. На основании своих расчетов Бор заключил, что последним редкоземельным элементом должен быть элемент №71 – лютеций, а элемент №72, по его мнению, должен быть аналогом циркония.

Экспериментально проверить выводы Бора взялись сотрудники Института теоретической физики в Копенгагене Костер и Хевеши. С этой целью они исследовали несколько образцов циркониевых минералов. Остатки, полученные после выщелачивания кипящими кислотами норвежских и гренландских цирконов, были подвергнуты рентгено-спектральному анализу. Линии рентгенограммы совпали с характерными линиями, вычисленными для элемента №72 по закону Мозли, На основании этого Костер и Хевеши в 1923 г. объявили об открытии элемента №72 и назвали его гафнием в честь города, где было сделано это открытие (Hafnia – латинское название Копенгагена). В той же статье они отметили, что вещество, полученное Урбеном и Довилье, не могло быть элементом с порядковым номером 72, так как указанная ими длина волн линий рентгеновского спектра отличалась от теоретических значений намного больше, чем это допустимо для экспериментальной ошибки. А вскоре сотрудники того же института Вернер и Хансен показали, что спектральные линии, обнаруженные Урбеном, соответствовали линиям не гафния, а лютеция; в спектре же образцов, содержащих 90% гафния, не встречалось ни одной спектральной линии Урбена.

В 1924 г. в отчете Комиссии по атомным весам было однозначно указано, что элемент с порядковым номером 72 должен быть назван гафнием, как это предложили Костер и Хевеши. С тех пор названию «гафний» отдали предпочтение все ученые мира, кроме ученых Франции, которые до 1949 г. употребляли название «кельтий».

Чистый гафний

Гафний сопутствует цирконию не только в природных рудах и минералах, ной во всех искусственных препаратах элемента №40, включая и металлический цирконий. Это было установлено вскоре после открытия элемента №72.

Цирконий, отделенный от гафния, впервые в 1923 г. получили Костер и Хевеши. А вместе с Янтсеном Хевеши получил первый образец металлического гафния 99%-ной чистоты.

В последующие годы было найдено много способов разделения циркония и гафния, но все они были сложны и трудоемки, и, кроме того, проблема разделения циркония и гафния с практической точки зрения не представляла интереса. Она разрабатывалась преимущественно в научных целях, так как в любой из известных тогда областей применения циркония и его соединений постоянное присутствие примеси гафния совершенно не сказывалось. Самостоятельное же использование гафния и его соединений ничего особенно нового не сулило. Поэтому химия гафния развивалась медленно, а новый металл и его соединения выделялись в ничтожных количествах: до 1930 г. в Европе было получено всего около 70 г чистой двуокиси гафния.

Наш век называют атомным. Не цирконий и не гафний тому причиной, но к атомным делам они оказались сопричастными. И если с точки зрения химии цирконий и гафний – аналоги, то с позиции атомной техники они – антиподы.

Вероятность поглощения нейтронов (в физике, напоминаем, ее называют поперечным сечением захвата) измеряется в барнах. У чистого циркония сечение захвата равно 0,18 барна, а у чистого гафния – 120 барн. Примесь 2% гафния повышает сечение захвата циркония в 20 раз, и именно поэтому цирконий, предназначенный для реакторов, должен содержать не более 0,01% гафния. В природных же соединениях циркония содержание гафния обычно больше 0,5%. Разделение этих элементов стало необходимым хотя бы ради циркония...

В 1949 г. в США был разработан достаточно эффективный процесс разделения циркония и гафния методом жидкостной экстракции. В 1950 г. этот процесс внедрили на заводе, а с января 1951 г. была налажена систематическая выплавка циркония «реакторной чистоты». Гафний в форме гидроокиси, получаемой в процессе разделения, представлял собой вначале отвальный побочный продукт. Но вскоре технике потребовался и сам гафний.

У каждого из шести природных изотопов гафния свой «нейтронный аппетит», о размерах которого можно судить по данным о ядерно-физических свойствах изотопов гафния:

Для изготовления регулирующих стержней гафний стали применять с начала 50-х годов. К этому же времени относится начало бурного развития металлургии гафния. Если до 1952 г. в США было произведено менее 50 кг двуокиси гафния, то в 1952 г. выпуск металлического губчатого гафния составил уже 2,7, а в 1963 г. – 59 т.

Эффективность гафниевых стержней со временем почти не меняется. В природном гафнии достаточно изотопов с большим поперечным сечением захвата, причем под действием облучения образуются новые изотопы с большими сечениями захвата. Вместе с тем гафний обладает хорошей механической прочностью, высокой термостойкостью и исключительной коррозионной стойкостью в горячей воде; облучение не влияет на коррозионную стойкость гафния. Еще лучшими свойствами обладает сплав гафния с цирконием (4,5%), железом, титаном и никелем (по 0,02%).

Где еще можно использовать гафний

Гафний – металл серебристо-белого цвета, имеющий поверхность с ярким нетускнеющим блеском. Это качество делает его подходящим материалом для изготовления ювелирных изделий. Но к ювелирам гафний не попадает – это металл техники. Первым его потребителем была радиотехника. Гафний и сейчас используют при изготовлении радиоламп, рентгеновских и телевизионных трубок.

Гафний нужен и металлургам – для улучшения механических и физико-технических свойств других металлов, для получения специальных жаростойких сталей и твердых сплавов.

Тугоплавкость, способность быстро поглощать и отдавать тепло делают гафний перспективным конструкционным материалом в производстве ракетной техники. Здесь он применяется в виде сплавов с танталом, которые устойчивы к окислению при температуре до 1650°C.

Благодаря устойчивости к действию горячей воды, паро-воздушных смесей, жидкого натрия, щелочей, разбавленной соляной кислоты, азотной кислоты любой концентрации гафний – перспективный конструкционный материал для химического машиностроения. Но, поскольку он дефицитен, обычно используют не гафниевые аппараты, а лишь тонкие гафниевые покрытия. Их получают, разлагая хлористые соединения гафния при 800...1000°C. Будь гафний подешевле, он нашел бы еще много применений в других отраслях техники. А дорог он не только потому, что принадлежит к числу редких и рассеянных элементов, – трудоемка технология его получения.

От руды к металлу

Гафний входит в состав всех минералов циркония, но только циркон ZrSiO 4 , в котором 0,5...2% атомов циркония замещено атомами гафния, используется промышленностью как гафниевое сырье. Циркон очень прочный в химическом отношении минерал: нет пи одного реагента, могущего разложить его при температуре до 100°C.

Наиболее распространенный технологический процесс получения гафния состоит в следующем.

Измельченный циркон смешивают с графитом (или другим углеродсодержащим материалом) и нагревают до 1800°C в дуговой плавильной печи без доступа воздуха. При этом цирконий и гафний связываются углеродом, образуя карбиды ZrC и HfC, а кремний улетучивается в виде моноокиси SiO. Если ту же смесь нагревать в присутствии воздуха, продукты реакции наряду с углеродом будут содержать азот и называться карбонитридами.

Карбиды и карбонитриды охлаждают, разбивают на куски и загружают в шахтную печь. Там при температуре около 500°C эти продукты реагируют с газообразным хлором – образуются тетрахлориды циркония и гафния.

Цирконий и гафний разделяют, используя минимальные различия в свойствах соединений этих элементов. Промышленное применение пока нашли два метода: экстракционный, основанный на разной растворимости соединений циркония и гафния в метилизобутилкетоне или трибутилфосфате, и метод дробной кристаллизации комплексных фторидов, основанный на различной растворимости K 2 и K 2 в воде.

Немного подробнее расскажем о химически более интересном первом методе.

Смесь тетрахлоридов растворяют в воде и в раствор добавляют роданистый аммоний NH 4 CNS. Этот раствор затем смешивают с метилизобутилкетоном (МИБК), насыщенным роданистоводородной кислотой HCNS. При таких условиях соединения гафния растворяются в МИБК лучше, чем соответствующие соединения циркония, и гафний концентрируется в органической фазе. Процесс многократно повторяют и получают водный раствор соединений циркония и раствор соли гафния в органическом растворителе. Но и в последнем есть примесь циркония. Чтобы извлечь его, органическую 1 фазу промывают раствором соляной кислоты, а затем экстрагируют гафний раствором серной кислоты. Из сернокислого раствора гафний осаждают в виде гидроокиси, которую прокаливанием переводят в двуокись гафния. Последнюю снова хлорируют и получают тетрахлорид гафния, который еще раз очищают возгонкой.

Из очищенного тетрахлорида металлический гафний восстанавливают магнием или сплавом магния с натрием. Процесс идет в герметически закрытой печи в атмосфере гелия. Полученный таким образом губчатый гафний переплавляют в слитки. Это делается в вакуумных электродуговых или электронно-лучевых печах.

Для приготовления гафния наиболее высокой чистоты обычный металл превращают в тетраиодид, который затем разлагают при высокой температуре.

Весь получаемый в наше время гафний – это попутный продукт производства реакторного циркония. Если бы пришлось получать гафний в самостоятельном производстве, он был бы в несколько раз дороже. А он и так принадлежит к числу самых дорогих металлов. По американским данным, в 1969 г. гафний был в два с половиной раза дороже серебра.

Сейчас больше 90% гафния потребляет ядерная энергетика. Поэтому, когда говорят о возможностях использования гафния в других областях, обычно добавляют эпитет «потенциальные». Скорее всего такое положение сохранится надолго, ибо ядерная энергетика развивается очень быстро, быстрее подавляющего большинства отраслей... Видимо, так уж ему суждено – быть «атомным» металлом. И это элементу, у которого из шести природных изотопов радиоактивен только один!

Дважды удивительный минерал

Минерал тортвейтит Sc 2 Si 2 O 7 – единственный собственный минерал редкого элемента скандия. Но тортвейтит интересен и другим: это единственный минерал, в котором гафния больше, чем циркония. Ионы этих металлов частично замещают скандий в кристаллической решетке тортвейтита. Совершенно необычное соотношение между гафнием и цирконием объясняется тем, что значения ионных радиусов Hf 4+ и Sc 3+ ближе, чем Zr 4+ и Sc 3+ . Поэтому ион гафния «внедряется» в кристалл тортвейтита легче, чем ион циркония.

География циркона

Содержание двуокиси гафния в цирконах обычно составляет 0,5...2,0%, по в цирконах из Нигерии оно часто превышает 5%. Поэтому нигерийские цирконовые концентраты в три раза дороже рядовых. Цирконом богаты прибрежные отмели и многочисленные наносные отложения в Австралии, США, Индии и Бразилии. Промышленные запасы циркониевых руд (по циркону и бадделеиту) в капиталистических странах оцениваются в 23 343 тыс. т, а запасы этих руд по гафнию – в 230 тыс. т. Мировая добыча циркона в 1969 г. превысила 400 тыс. т, из них 364 тыс. т. приходится на долю Австралии.

В Советском Союзе месторождения циркона есть на Украине и на Урале.

Неизменная прочность

Сплав тантала с 8% вольфрама и 2% гафния имеет высокую прочность и при температуре, близкой к абсолютному нулю, и при 2000°C. Он хорошо обрабатывается и сваривается. Сплав предназначен для изготовления камер сгорания ракетных двигателей, каркаса и обшивки ракет.

Заменитель серебра

Сплав циркония с 8,5...20% гафния по внешнему виду и изнашиваемости не уступает серебру, при этом он примерно вдвое дешевле последнего. Предполагалось использовать этот сплав для чеканки монет.

Одна пятидесятая

Поскольку гафний извлекают попутно при получении реакторного циркония, его производство растет пропорционально выпуску последнего, причем на 50 кг циркония получают приблизительно 1 кг гафния. За текущее десятилетие (1970...1980 гг.) мировая мощность атомных электростанций возрастет в 5...8 раз, соответственно возрастет производство циркония и гафния. Ведь каждый мегаватт мощности АЭС требует от 45 до 79 кг циркония для изготовления труб и других деталей. Кроме того, часть циркониевых труб в действующих реакторах необходимо время от времени заменять. В 1975 г. мировое производство циркония составило, по американским данным, около 3 тыс. т. Значит, гафния в мире сейчас производится что-нибудь около 60 т в год. Это, конечно, не много, но есть металлы, производство которых намного меньше.

Гафний (лат. Hafnium), Hf, химический элемент IV группы периодической системы Менделеева; порядковый номер 72, атомная масса 178,49; серебристо-белый металл. В состав природного Гафния входят 6 стабильных изотопов с массовыми числами 174, 176-180. Существование Гафния было предсказано Д.И. Менделеевым в 1870 году. В 1921 году Н. Бор показал, что элемент № 72 должен иметь строение атома, подобное цирконию, и что, следовательно, его надо искать не среди редкоземельных элементов, как думали раньше, а среди минералов циркония. Венгерский химик Д. Хевеши и голландский физик Д. Костер систематически исследовали минералы циркония методом рентгеноспектралыюго анализа и в 1922 году обнаружили элемент № 72, назвав его Гафний по месту открытия - городу Копенгагену (позднелат. Hafnia).

Гафний не имеет собственных минералов и в природе обычно сопутствует цирконию. В земной коре содержится 3,2·10 -4 % Гафния по массе, в большинстве циркониевых минералов его содержание составляет от 1-2 до 6-7%, во вторичных минералах - иногда до 35%. Наиболее ценным промышленным типом месторождений Гафния являются морские и аллювиальные россыпи минерала циркона.

Физические свойства Гафния. При обычной температуре Гафний имеет гексагональную решетку с периодами а = 3,1946Å и с = 5,0511Å. Плотность Гафния 13,09 г/см 3 (20 °С). Гафний тугоплавок, его t пл 2222 °С, t кип 5400 °С. Атомная теплоемкость 26,3 кдж/(кмоль·К) (25-100°С); удельное электросопротивление 32,4·10 -8 ом·м (0°С). Особенность Гафния - высокая эмиссионная способность; работа выхода электрона 5,77·10 -19 дж, или 3,60 эв (980-1550°С); Гафний имеет высокое сечение захвата тепловых нейтронов, равное 115·10 -28 м 2 , или 115 барн (у циркония 0,18·10 -28 м 2 , или 0,18 барн). Чистый Гафний пластичен, легко поддается холодной и горячей обработке (прокатке, ковке, штамповке).

Химические свойства Гафния. По химические свойствам Гафний очень похож на цирконий вследствие почти одинаковых размеров ионов этих элементов и полного сходства электронной структуры. Однако химическая активность Гафния несколько меньше, чем Zr. Основная валентность Гафния равна 4. Известны также соединения 3-, 2- и 1-валентного Гафния.

При комнатной температуре компактный Гафний совершенно устойчив к атмосферным газам. Однако при нагревании выше 600 °С быстро окисляется и взаимодействует, подобно цирконию, с азотом и водородом. Гафний отличается коррозионной стойкостью в чистой воде и водяных парах до температур 400 °С. Порошкообразный Гафний пирофорен. Оксид Гафния HfO 2 - белое тугоплавкое (t пл 2780 °С) вещество, обладающее высокой химические стойкостью. Оксид Гафния (IV) и соответствующие ей гидрооксиды амфотерны с преобладанием основных свойств. При нагревании HfO 2 с щелочами и оксидами щелочноземельных металлов образуются гафнаты, например Ме 2 НfO 3 , Ме 4 НfО 4 , Me 2 Hf 2 O 3 .

При нагревании Гафний реагирует с галогенами, образуя соединения типа HfX 4 (тетрафторид HfF 4 , тетрахлорид HfCl 4 и другие). При высокой температуре Гафний взаимодействует с углеродом, бором, азотом, кремнием, образуя металлоподобные, тугоплавкие, весьма устойчивые по отношению к химические реагентам соединения: HfB, HfB 2 (t пл 3250 °С), HfC (t пл 3887 °С), HfN (t пл 3310 °С), Hf 2 Si, HfSi, HfSi 2 . Металлический Гафний растворяется в плавиковой и концентрированной серной кислотах и расплавленных фторидах щелочных металлов. Он практически не растворим в азотной, соляной, фосфорной и органических кислотах и весьма устойчив по отношению к растворам щелочей. К числу хорошо растворимых в воде соединений Гафния, которые находят применение в технологии и аналитической химии Гафния, принадлежат тетрахлорид и оксихлорид - HfCl 4 и НfOCl 2 ·8Н 2 О, нитраты и сульфаты Гафния -HfO(NO 3) 2 ·nH 2 O (n = 2 и 6), Hf(SO 4) 2 и Hf(SO 4) 2 ·4H 2 O. Для Гафния характерно образование комплексов с различными органических кислородсодержащими соединениями.

Получение Гафния. Соединения Гафния обычно выделяют в конце технологического цикла производства соединений циркония из рудного сырья. Металлический Гафний в настоящее время получают восстановлением HfCl 4 магнием или натрием.

Применение Гафния. Гафний используется в ядерной энергетике (регулирующие стержни реакторов, экраны для защиты от нейтронного излучения) и в электронной технике (катоды, геттеры, электроконтакты). Перспективно применение Гафний в производстве жаропрочных сплавов для авиации и ракетной техники. Твердый раствор карбидов Гафния и тантала, плавящийся выше 4000 °С, - самый тугоплавкий керамический материал; из него изготовляют тигли для плавки тугоплавких металлов, детали реактивных двигателей.

Гафний

ГА́ФНИЙ -я; м. [лат. Hafnium] Химический элемент (Hf), серебристо-белый тугоплавкий металл (используется в атомной промышленности как компонент лёгких жаропрочных и тугоплавких сплавов).

Га́фниевый, -ая, -ое.

Га́фний

(лат. Hafnium), химический элемент IV группы периодической системы. Название от позднелатинского Hafnia - Копенгаген. Серебристо-белый тугоплавкий металл; плотность 13,35 г/см 3 , t пл 2230ºC. Материал для регулирующих стержней и защиты ядерных реакторов, электродов плазмотронов, компонент жаропрочных и тугоплавких сплавов для авиационной и ракетной техники.

ГАФНИЙ

ГА́ФНИЙ (лат. Hafnium), Hf (читается «гафний»), химический элемент с атомным номером 72, атомная масса 178,49. Природный гафний состоит из шести изотопов с массовыми числами 174 (0,18%), 176 (5,20%), 177 (18,50%), 178 (27,14%), 179 (13,75%) и 180 (35,23%). Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 2 6s 2 . Наиболее характерна степень окисления гафния +4 (валентность IV). Соединения в степенях окисления +3 и +2 (кластерные) малоустойчивы. Расположен в группе IVB в 6-м периоде периодической системы. Радиус атома 0,159 нм, радиус иона Hf 4+ 0,082 нм. Энергии последовательной ионизации 7,5, 15,0, 23,3, 33,3 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
История открытия
Существование гафния было предсказано Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) в 1870. Открыт гафний был в 1923 датчанином Д. Костером (см. КОСТЕР Дирк) и венгром Д. Хевеши (см. ХЕВЕШИ Дьердь) в Копенгагене (отсюда и название: от латинского Hafnia - Копенгаген) при изучении цирконийсодержащего образца методом рентгеновской спектроскопии. Металлический гафний приготовлен впервые Хевеши в 1926 восстановлением гафната калия K 2 HfO 3 натрием:
K 2 HfO 3 + 4Na = Hf + K 2 O + 2Na 2 O
Нахождение в природе
Содержание гафния в земной коре (3-4)·10 –4 % по массе. Относится к рассеянным элементам. Собственных минералов не образует, встречается в виде примеси к минералам циркония (см. ЦИРКОНИЙ) .
Получение
Получают попутно с цирконием. Отделить гафний от всегда сопутствующего ему в природе элемента-аналога циркония очень трудно из-за близости их химического поведения, что объясняется близостью ионных радиусов Hf 4+ и Zr 4+ . Разделение проводят с помощью ионного обмена и экстракцией растворителями.
После отделения методом экстракции и дробной кристаллизации получают комплексный фторид K 2 . Далее проводят магний-, кальций- или натрийтермию в атмосфере Ar или He:
K 2 + 4Na = 4NaF + 2KF + Hf
Гафний получают также восстановлением HfO 2 кальцием (см. КАЛЬЦИЙ) при 1300 °C:
HfO 2 + 2Ca = Hf + 2CaO
Глубокую очистку получаемого таким образом гафния проводят в химическом реакторе при 600 °C:
Hf + 2I 2 = HfI 4 ,
В горячей зоне реактора на тонкой вольфрамовой проволоке, нагреваемой электрическим током до 1300-1750 °C, HfI 4 разлагается на Hf и I 2 . Пары иода снова реагируют с исходным гафнием. Очищенный гафний переплавляют в дуговых и электроннолучевых печах.
Физические и химические свойства
Компактный гафний - серебристо-белый блестящий металл. Порошкообразный - темно-серый, матовый.
Ниже 1740 °C устойчив гексагональный a-Hf со структурой магния (a = 0,31883 нм, c = 0,50422 нм). Плотность 13,350 кг/дм 3 . Выше 1740 °C устойчив b-Hf с кубической объемно-центрированной решеткой типа a-Fe (а = 0,3615 нм). Гафний тугоплавок, температура плавления 2230 °C, кипения - 4620 °С.
Механические свойства гафния зависят от его чистоты и способа обработки. Примеси кислорода, азота, углерода, водорода придают гафнию хрупкость, облучение нейтронами увеличивает его твердость; отжиг восстанавливает первоначальные свойства.
По химическим свойствам гафний подобен цирконию (см. ЦИРКОНИЙ) . При нормальных условиях устойчив к коррозии из-за образования оксидной пленки HfO 2 . При нагревании химическая активность гафния возрастает. При температурах выше 700 °C он реагирует с кислородом воздуха:
Hf + O 2 = HfO 2
С азотом при 700-800 °C образуется нитрид гафния HfN
2Hf + N 2 = 2HfN
Тетрагалогениды гафния (HfCl 4 , HfBr 4 и HfI 4) образуются из простых веществ при 200-400 °C.
При 350-400 °C металлический гафний поглощает водород с образованием гидрида HfH 2 , выше 400 °C гидрид отдает водород.
Гафний взаимодействует с кислотами, только если создаются условия окисления и образования анионных комплексов Hf(IV). Мелко раздробленный гафний растворяется в плавиковой кислоте (см. ФТОРИСТОВОДОРОДНАЯ КИСЛОТА) :
Hf + 6HF = H 2 + 2H 2 ­
В смеси азотной и плавиковой кислот и в царской водке идут реакции:
3Hf + 4HNO 3 + 18HF = 3H 2 + 4NO – + 8H 2 O,
3Hf + 4HNO 3 + 18HCl = 3H 2 + 4NO – + 8H 2 O
С концентрированной серной кислотой гафний взаимодействует только при кипячении:
Hf + 5H 2 SO 4 = H 2 + 2SO 2 – + 4H 2 O
Гафний устойчив к растворам щелочей.
При окислении гафния последовательно возникает несколько нестехиометрических оксидов, высшим из которых является HfO 2 . Он существует в трех модификациях с температурами переходов 1650 °C и 2500 °C. Плавится HfO 2 при температуре 2780 °C.
Диоксид HfO 2 не растворяется в воде, концентрированных соляной и азотной кислотах, но взаимодействует с концентрированной плавиковой и серной кислотами. С расплавленными щелочами HfO 2 реагирует с образованием солей - гафнатов:
HfO 2 + 2NaOH = Na 2 HfO 3 + H 2 O
При подкислении растворов гафнатов выделяется гидратированный гелеобразный оксид HfO 2 ·xH 2 O (гидроксид гафния):
Na 2 HfO 3 + HCl = NaCl + HfO 2 ·xH 2 O,
При нагревании HfO 2 ·xH 2 O теряет воду:
HfO 2 ·xH 2 O -> HfO(OH) 2 -> HfO 2
Безводный хлорид гафния HfCl 4 получают нагреванием смеси оксида HfO 2 и C:
HfO 2 + C + 2Cl 2 = HfCl 4 + 2CO.
В водных растворах соли гафния существуют в виде сложных ассоциатов, из которых можно выделить кристаллогидраты:
Hf(OH) 2 Cl 2 ·7H 2 O и Hf(OH) 2 (NO 3) 2 ·H 2 O.
При нагревании с сильными восстановителями тетрагалогениды гафния переходят в три- и дигалогениды (HfCl 3 и HfCl 2). Получен также HfCl.
Применение
Основная часть производимого гафния в виде HfO 2 применяется для изготовления регулирующих стержней ядерных реакторов и защитных экранов. Применяется в качестве материала для катодных трубок и электродов в выпрямителях и газоразрядных трубках высокого давления. Жаропрочные сплавы гафния с танталом (см. ТАНТАЛ (химический элемент)) , молибденом (см. МОЛИБДЕН) и вольфрамом (см. ВОЛЬФРАМ) используются для изготовления камер сгорания реактивных двигателей.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Гафний" в других словарях:

    - (Hafnium), Hf, химический элемент IV группы периодической системы, атомный номер 72, атомная масса 178,49; металл. Гафний открыт нидерландским физиком Д. Костером и венгерским радиохимиком Д. Хевеши в 1923 … Современная энциклопедия

    Кельтий Словарь русских синонимов. гафний сущ., кол во синонимов: 3 кельтий (1) металл … Словарь синонимов

    - (лат. Hafnium) Hf, химический элемент IV группы периодической системы, атомный номер 72, атомная масса 178,49. Назван от позднелат. Hafnia Копенгаген. Серебристо белый тугоплавкий металл; плотность 13,35 г/см³, tпл 2230 .С. Материал для… … Большой Энциклопедический словарь

    - (символ Hf), ПЕРЕХОДНЫЙ ЭЛЕМЕНТ, серебристый металл, впервые открытый в 1923 г. Источник получения примеси в минералах ЦИРКОНИЯ. Используется как ЗАМЕДЛИТЕЛЬ в регулирующих стержнях АТОМНЫХ РЕАКТОРОВ. Свойства: атомный номер 72; атомная масса 178 … Научно-технический энциклопедический словарь

    Hf (Hafnium, от позднелат. Hafnia назв. г. Kопенгаген, где был открыт * a. hafnium; н. Hafnium; ф. hafnium; и. hafnio), хим. элемент IV группы периодич. системы Mенделеева, ат. н. 72, ат. м. 178,49. Природный Г. состоит из 6 стабильных… … Геологическая энциклопедия

    - (от позднелат. Hafnia Копенгаген; лат. Hafnium), Hf, хим. элемент IV группы периодич. системы элементов, ат. номер 72, ат. масса 178,49. Природный Г. состоит из 6 стаб. изотопов с массовыми числами 174, 176 180, из них 174Hf обладает слабой… … Физическая энциклопедия

    гафний - Hf Элемент IV группы Периодич. системы; ат. н. 72, ат. м. 178,49; серебристо белый металл. В состав природного Hf входят 6 стабильных изотопов с массовыми числами 174, 176—180. Существование Hf предсказано Д. И. Менделеевым в 1870 г.… … Справочник технического переводчика

    ГАФНИЙ - хим. элемент, символ Hf (лат. Hafnium), ат. н. 72, ат. м. 178,49; серебристо белый тугоплавкий металл, плотность 13090 кг/м3, tпл = 2222 °С. Содержится в рудах соединений циркония, из которых его и получают. Г. применяется для изготовления… … Большая политехническая энциклопедия


5. Применение

Основные области применения металлического гафния — производство сплавов для аэрокосмической техники, атомная промышленность, специальная оптика.

  • В атомной технике используется способность гафния к захвату нейтронов, и его применение в атомной промышленности — это производство регулирующих стержней, специальной керамики и стекла. Особенностью и преимуществом диборида гафния является очень малое газовыделение при «выгорании» бора.
  • В оптике применяется оксид гафния в связи с его температурной стойкостью и очень высоким показателем преломления. Значительную сферу потребления гафния составляет производство специальных марок стекла для волоконно-оптических изделий, а также для получения особо высококачественных оптических изделий, покрытия зеркал, в том числе и для приборов ночного видения, тепловизоров. Схожую область применения имеет и фторид гафния.
  • Карбид и борид гафния находят применение в качестве чрезвычайно износоустойчивых покрытий и производства сверхтвердых сплавов. Кроме того, карбид гафния является одним из самых тугоплавких соединений и используется для производства сопел космических ракет и некоторых конструкционных элементов газофазных ядерных реактивных двигателей.
  • Гафний отличает сравнительно низкая работа выхода электрона, и поэтому он применяется для изготовления катодов мощных радиоламп и электронных пушек. В то же время это его качество наряду с высокой температурой плавления позволяет использовать гафний для производства электродов для сварки металлов в аргоне и особенно электродов для сварки низкоуглеродистой стали в углекислом газе. Стойкость таких электродов в углекислом газе более чем в 3,7 раза выше, чем вольфрамовых. В качестве эффективных катодов с малой работой выхода применяется также гафнат бария.
  • Карбид гафния в виде мелкопористого керамического изделия может служить чрезвычайно эффективным коллектором электронов при условии испарения с его поверхности в вакууме паров цезия-133, в этом случае работа выхода электронов снижается менее чем 0,1-0,12 эВ и этот эффект может быть использован для создания высокоэффективных термоэмиссионных электрогенераторов и частей мощных ионных двигателей.
  • На основе диборида гафния и никеля разработано и уже давно используется высокоизносоустойчивое и твердое композиционное покрытие.
  • Сплавы тантал-вольфрам-гафний являются лучшими сплавами для подачи топлива в газофазных ядерных ракетных двигателях.
  • Сплавы титана, легированные гафнием, применяются в судостроении, а легирование гафнием никеля не только увеличивает его прочность и коррозионную стойкость, но и резко улучшает свариваемость и прочность сварных швов.
  • Добавление гафния к танталу резко увеличивает его стойкость к окислению на воздухе за счет образования плотной и непроницаемой пленки сложных оксидов на поверхности, и, кроме всего, эта пленка оксидов очень стойка к теплосменам. Эти свойства позволили создать очень важные сплавы для ракетной техники. Один из лучших сплавов гафния и тантала для сопел ракет содержит до 20 % гафния. Также следует отметить большой экономический эффект при применении сплава гафний-тантал для производства электродов для воздушно-плазменной и кислородно-пламенной резки металлов. Опыт применения такого сплава показал в 9 раз больший ресурс работы по сравнению с чистым гафнием.
  • Легирование гафнием резко упрочняет многие сплавы кобальта, очень важных в турбостроении, нефтяной, химической и пищевой промышленности.
  • Гафний используется в некоторых сплавах для сверхмощных постоянных магнитов на основе редких земель.
  • Сплав карбида гафния и карбида тантала является самым тугоплавким сплавом. Кроме того, есть отдельные указания на то, что при легировании этого сплава небольшим количеством карбида титана температура плавления может быть увеличена еще на 180 градусов.
  • Добавлением 1 % гафния в алюминий получают сверхпрочные сплавы алюминия с размером зерен металла 40-50 нм. При этом не только упрочняется сплав, но и достигается значительное относительное удлинение и повышается предел прочности при сдвиге и кручении, а также улучшается вибростойкость.
  • Диэлектрики с высокой диэлектрической проницаемостью на основе оксида гафния в течение следующего десятилетия заменят в микроэлектронике традиционный оксид кремния, что позволит достичь гораздо более высокой плотности элементов в чипах. С 2007 года диоксид гафния используется в 45-нм процессорах Intel Penryn. Также в качестве диэлектрика с высокой диэлектрической проницаемостью в электронике применяется силицид гафния. Сплавы гафния и скандия применяются в микроэлектронике для получения резистивных пленок с особыми свойствами.
  • Гафний используется для производства высококачественных многослойных рентгеновских зеркал.

Перспективные области применения

Метастабильные ядра гафния-178m2 содержат избыточную энергию, которая может быть высвобождена с помощью внешнего воздействия на ядро, и этот эффект может быть применен для конструирования безопасного ядерного оружия. Энергия, выделяемая 1 граммом гафния-178m2, примерно соответствует 50 кг тротила. Метастабильный изомер гафния может быть использован для «накачки» компактных лазеров боевого назначения.

Мирное применение этого ядерного изотопа интересно тем, что он может быть использован как мощный источник гамма-лучей, допускающий регулировку дозы излучения, источник энергии для транспорта, очень ёмкий аккумулятор энергии.

Основной проблемой использования гафния-178m2 является трудность наработки этого ядерного изомера. В то же время он является обычным продуктом атомной электростанции. Эксплуатация так называемого «гафниевого цикла» и расширение сектора применения гафния будет возрастать по мере увеличения использования гафния для регулировки реакторов. По мере накопления изомера в странах с развитой атомной промышленностью произойдет и становление «гафниевой энергетики».

Разработками так называемой «гафниевой бомбы» на основе изомера Hf с 1998 по 2004 год занималось агентство DARPA. Однако, даже использование источников рентгеновского излучения большой мощности не позволило обнаружить эффект индуцированного распада. В 2005 году было показано, что при использовании существующих на сегодняшний день технологий высвобождение избыточной энергии из ядра гафния-178m2 не представляется возможным.