Как получают кислород в космосе. Что такое кислородная свеча? Жизнеобеспечение экипажей космической станции "Мир"

Если ресурсы ограничены, то приходится работать с тем, что есть, особенно в суровых условиях космического пространства. Конечно, на МКС регулярно отправляют грузовые корабли с поставками, но для длительных миссий важна самодостаточность. Поэтому придется перерабатывать и повторно использовать драгоценные ресурсы, среди которых и кислород.

Свежий воздух

Сейчас ученые активно изучают как фотосинтез (процесс трансформации организмом света в энергию с побочным продуктом в виде кислорода) осуществляется в космосе. Для этого взяли микроводоросли Arthrospira (спирулина) и погрузили в фотобиореактор (цилиндр, наполненный светом). На станции углекислый газ через фотосинтез будет переходить в кислород и съедобную биомассу (белки).

Мы знаем, как это происходит в земных условиях, но важно протестировать процесс в пространстве. Эксперимент собираются проводить в течение месяца, когда количество кислорода из водорослей изменится достаточно.

После возвращения на Землю микроводоросли проанализируют в апреле 2018 года. Генетическая информация позволит получить более четкую картину влияния невесомости и радиации на растительную клетку. Известно, что Arthrospira наделена высокой устойчивостью к излучению, но нужно проверить ее максимальные способности.

Проект входит в часть программы Melissa (Альтернативная система жизнеобеспечения). Она отвечает за многие исследовательские и образовательные мероприятия, вроде проекта AstroPlant – собирает сведения о росте растений в разных уголках Земли.

Следом за этим последует проект Uriniss, изучающий рециркуляцию мочи, чтобы создать газообразный азот, энергию, потенциальные питательные вещества для растительности и воду.

«Предыдущие космические миссии – Меркурий, Джемини, Аполлон, брали с собой все необходимые запасы воды и кислорода и сбрасывали жидкие и газообразные отходы в космос», - поясняет Роберт Багдижян (Robert Bagdigian) из Центра Маршалла. Вкратце, системы жизнеобеспечения астронавтов были «разомкнутыми» – они полагались на поддержку с Земли, что частично верно и сегодня для Международной космической станции (МКС).

Однако для продолжительных миссий на или появляется смысл в том, чтобы замкнуть систему – то есть перерабатывать воздух и грязную воду, вместо того чтобы выбрасывать их. В ближайшее время на МКС будут проводиться испытания такой системы регенерации. Название проекта – Системы контроля среды и жизнеобеспечения (Environmental Control and Life Support Systems), более известное под аббревиатурой ECLSS. Роберт Багдижян является руководителем данного проекта.

Система регенерации воды ECLSS

«Русские опередили нас в этой области, - говорит Робин Карраскилло (Robyn Carrasquillo), технический руководитель проекта ECLSS, - Ещё космические аппараты «Салют» и «Мир» были способны конденсировать влагу из воздуха и использовали электролиз – пропускание электрического тока через воду – для производства кислорода». Разработанная в NASA система ECLSS будет запущена на МКС в 2008 году и пойдёт в вопросах регенерации ещё дальше – она способна получать питьевую воду не только из испарений, но и из мочи.

Процесс восстановления воды из мочи – сложная техническая задача: «Моча гораздо «грязнее» водяных испарений, - объясняет Карраскилло, - Она способна разъедать металлические детали и засорять трубы». Система ECLSS использует для очищения мочи процесс, называемый парокомпрессионная дистилляция: моча кипятится до тех пор, пока вода из неё не превратится в пар. Пар – естественно очищенная вода в парообразном состоянии (за исключением следов аммиака и других газов) – поднимается в дистилляционную камеру, оставляя концентрированную коричневую жижу нечистот и солей, которую Карраскилло милосердно называет «рассолом» (который затем выбрасывается в открытый космос). Затем пар охлаждается, и вода конденсируется. Полученный дистиллят смешивается со сконденсированной из воздуха влагой и фильтруется до состояния, пригодного для питья. Система ECLSS способна восстановить 100% влаги из воздуха и 85% воды из мочи, что соответствует суммарной эффективности около 93%.

Описанное выше, однако, относится к работе системы в земных условиях. В космосе появляется дополнительная сложность – пар не поднимается вверх: он не способен подняться в дистилляционную камеру. Поэтому в модели ECLSS для МКС «…мы вращаем дистилляционную систему для создания искусственной гравитации, чтобы разделить пары и рассол», - поясняет Карраскилло.

Более того, в микрогравитации космического аппарата человеческие волосы, частицы кожи, пух и другие примеси взвешены в воздухе и не падают на пол. В связи с этим необходима внушительная система фильтрации. В конце процесса очистки в воду добавляется йод для замедления роста микробов (хлор, используемый для очистки воды на Земле, слишком химически активен и опасен для хранения в условиях космоса).

Система регенеративного восстановления воды для МКС, имея вес около полутора тонн, будет «…производить полгаллона воды в час, что больше, чем потребности команды из трёх человек, - заявляет Карраскилло, - Это позволит космической станции непрерывно поддерживать жизнедеятельность шести астронавтов». Система разработана для производства питьевой воды «…стандарты чистоты которой выше большинства муниципальных водопроводных систем на Земле», - добавил Багдижян.

В добавление к производству питьевой воды для экипажа, система восстановления воды будет снабжать водой другую часть ECLSS: систему генерации кислорода (oxygen generation system, OGS). Принцип действия OGS – электролиз. Молекулы воды расщепляются на кислород, необходимый для дыхания, и водород, который выводится из космического аппарата. «Цикл производства воздуха требует достаточно чистую воду, чтобы электролизные камеры не засорялись», - подчёркивает Багдижян.

«Регенерация гораздо более эффективна, чем пополнение запасов станции с Земли», - заявляет Карраскилло, особенно после того, как закончится срок эксплуатации Шаттлов в 2010 году. Восполнение 93% грязной воды впечатляет, однако для многомесячных и многолетних миссий к Луне и Марсу, последующие версии системы ECLSS должны достигать эффективности, близкой к 100%. В таком случае астронавты будут готовы к выживанию в условиях нашей «Дюны».

Чем пахнет в открытом космосе?

Почувствовать запах в открытом космосе невозможно, и мешают этому сразу несколько вещей. Во-первых, запах создают молекулы, выделяемые каким-нибудь пахучим веществом. Но в космосе пустота, а значит, там нет ни пахучих веществ, ни молекул, создающих запах, там просто нечему пахнуть. Во-вторых, все нормальные люди будут выходить в открытый космос в герметичном скафандре, а значит, ничего «космического» человеческий нос не вдохнёт. Зато на космической станции, где обитают космонавты запахов предостаточно.

Чем пахнет на космической станции?

Когда космонавты попадают на станцию и снимают шлем скафандра, они чувствуют особенный запах. Запах очень резкий и странный. Говорят, что он похож на запах старого засохшего куска жареного мяса. Однако в этом «аромате» чувствуется ещё запах раскалённого металла и сварочной гари. Космонавты на удивление единодушны в использовании «мясо-металлических» терминов при описании запаха на международной космической станции. Иногда, правда, некоторые добавляют, что часто пахнет озоном и чем-то кислым, немного едким.

Откуда берётся этот запах на МКС?

Представьте себе, как устроено воздушное снабжение на станции, и вы сразу найдёте ответ на это вопрос. На МКС нельзя открыть форточку чтобы проветрить помещение и впустить свежий воздух снаружи: там попросту нет воздуха. Дыхательную смесь привозят с Земли раз в несколько месяцев, поэтому на станции люди дышат одним и тем же воздухом, который очищают специальными фильтрами. Эти фильтры, конечно, не идеальны, поэтому некоторые запахи остаются.

Наши космонавты сравнивают станцию с жилым домом, в котором может пахнуть как угодно. Пахнет сам «дом»: материалы обшивки и детали приборов. В «доме» живут люди, поэтому, кроме этих технических запахов, на станции присутствуют и привычные для нас, земные запахи: например, такие, как аромат борща или солянки. Когда кто-то из космонавтов собирается пообедать, у него не получится сделать это в одиночку. Остальные узнают об этом, даже находясь в другом конце станции. Запахи на станции распространяются очень быстро, так как воздух постоянно перемешивается системой вентиляторов. Это необходимо, чтобы вокруг космонавтов не скапливалось облако выдыхаемого ими углекислого газа. Если воздух не перемешивать, вокруг космонавта будет повышаться уровень углекислого газа, и человек будет чувствовать себя всё хуже и хуже.
Все мы знаем, что каждый воспринимает запахи по-своему: некоторые ароматы, любимые одними членами экипажа, могут вызывать у других отторжение и аллергию, поэтому список продуктов, которые можно взять с собой, строго регламентирован. Однако некоторые люди всегда сопротивляются даже самым разумным запретам, как, например, американский астронавт Джон Янг, в 1965 году взявший на борт корабля сэндвич с ветчиной. Члены экипажа сначала оценили резкий раздражающий запах ветчины, а потом долго собирали пахучие хлебные крошки, разлетевшиеся по кораблю и чудом не повредившие оборудование. Космонавты – люди очень воспитанные, поэтому никто не узнал, что они думали, собирая эти крошки.

Когда вы прилетите на станцию, кроме технических и «съедобных» запахов вы ощутите ещё и едкий запах человеческого пота и отшелушивающейся естественным путём кожи. Запах пота досаждает нам и в земных условиях, а в космосе человек потеет ещё сильнее. Так, при серьёзных нагрузках космонавты могут потерять около двух килограммов веса и, как вы понимаете, сильно вспотеть. Прибавьте к этому тот факт, что душа на МКС нет, а для мытья космонавты используют влажные салфетки и полотенца. Чтобы не примешивать дополнительных запахов в атмосферу станции, на МКС предусмотрены специальные, имеющие слабый запах средства гигиены, а любой парфюм строго запрещён. Подробнее о том, как космонавты моются, можно прочесть здесь.

Кто следит за «космическим ароматом»?

Создание комфортной атмосферы для космонавтов – это задача, по своей важности не уступающая задаче обеспечения безопасности полёта. Посторонние запахи извлекаются из атмосферы специальными поглотителями, однако полностью избавиться от «ароматов» невозможно. Поэтому при подготовке полёта тщательно отбирают материалы, из которых строится интерьер космического аппарата, и вещи, разрешённые на борту. Например, в NASA работает команда экспертов, в шутку называющих себя «носонавтами», которые «обнюхивают» всё, что будет присутствовать на борту корабля: пластики, металлы, сменное бельё, научные приборы, гигиенические принадлежности, кроссовки и даже игрушку, которую астронавтка хотела взять в полёт по просьбе маленького сына. На сегодняшний день человеческий нос – это лучший прибор, чтобы представить, как вещи будут пахнуть в космосе. Учёные многих стран работают над проблемой создания приборов, воспринимающих запахи. Но пока что ни один прибор не может сравниться с обонянием собаки или (кто бы мог подумать) осы. Но собаки, а тем более осы – существа неразговорчивые и поэтому не могут рассказать нам, как пахнет тот или иной предмет. Вот и приходится нюхательную работу выполнять тренированным людям. Так что, если вы изобретёте способ хорошо улавливать запахи, то, пожалуй, навсегда войдёте в историю как великий изобретатель. А до тех пор вещи, посылаемые в космос, будут обнюхивать люди, делая это с завязанными глазами. Глаза завязываются для того, чтоб внешний вид предмета, не повлиял на восприятие запаха человека. Иногда из-за спешки тесты на запах провести не успевают, и тогда экипаж на борту корабля ждут всевозможные сюрпризы. Например, астронавтам пришлось вернуть на борт шаттла сумку с непроверенными застёжками, так как они пахли, «как пальцы повара, резавшего лук».

В России атмосферой космических кораблей занимаются в Институте медико-биологических проблем. Ещё на этапе проектирования космического аппарата специалисты проверяют все неметаллические материалы в герметичных камерах на наличие ярко выраженного запаха. Если такой запах есть, то материал выбраковывается. Главная задача специалистов – чтобы на станции было как можно меньше пахнущих веществ; всё, что берется на орбиту, строго отбирается по критерию обеспечения чистоты воздуха. Поэтому, к сожалению, собственные предпочтения членов экипажа относительно запахов на станции не учитываются. Космонавты говорят, что больше всего скучают по запахам земли: запаху дождя, листьев, яблок. Однако иногда строгие специалисты по орбитальным запахам всё же делают космонавтам подарки: в корабль «Союз» перед Новым годом положили мандарины и веточку ели, чтобы на станции ощутили чудесный аромат праздника.

Публикации сотрудников АО «НИИхиммаш»

Регенерация воды и атмосферы на космической станции: опыт орбитальных станций "Салют", "Мир" и МКС, перспективы развития

Л.С.Бобе, Л.И.Гаврилов, А.А.Кочетков, Э.А.Курмазенко (АО "НИИхиммаш"), П.О.Андрейчук, А.А.Зеленчуков, С.Ю.Романов (НПО "Энергия"), Ю.Е.Синяк (ИМБП РАН). Доклад на конференции IAC-10.A1.6.6., 27.10.2010

Реферат

На основе анализа опыта эксплуатации российских космических станций "Салют", "Мир" и Международной космической станции МКС представлены данные по балансу воды и кислорода на станции, параметрам работы и характеристикам систем регенерации воды и атмосферы. На основе этих данных проведен проектный анализ комплекса регенерационных системы жизнеобеспечения для космической станции на орбите Луны. Предложенный комплекс физико-химических систем жизнеобеспечения включает: комплексную систему регенерации воды из конденсата атмосферной влаги, из конденсата витаминной оранжереи и воды из системы утилизации углекислого газа; систему регенерации воды из урины; систему регенерации санитарно-гигиенической воды; систему регенерации кислорода на основе электролиза воды; систему очистки атмосферы от микропримесей; систему очистки атмосферы от углекислого газа и его концентрирования и систему переработки углекислого газа; систему запасов воды, кислорода и азота. Стартовая масса систем жизнеобеспечения (включая ЗИП, резервное оборудование, эквивалентную массу потребления электроэнергии и сброса тепла) приемлема для лунной орбитальной станции. Обязательной стадией проверки новых процессов и систем регенерации воды и атмосферы для перспективных миссий является их испытания на МКС.

Введение

Реализация перспективных орбитальных и межпланетных полётов связана с совершенствованием систем жизнеобеспечения (СЖО) экипажа. Эти системы должны осуществлять максимальное извлечение и регенерацию воды из водосодержащих продуктов жизнедеятельности человека и биотехнического комплекса, осуществлять электролизное получение кислорода из регенерированной воды, очищать атмосферу от углекислого газа и других примесей, преобразовывать углекислый газ с получением воды; обеспечивать потребности экипажа в воде и кислороде с минимальным добавлением этих веществ из запасов.


Источниками воды и кислорода на борту станции являются продукты жизнедеятельности человека: пот и выдыхаемая влага, собираемые в системе кондиционирования атмосферы (конденсат атмосферной влаги); урина; углекислый газ; влага, испаряемая растениями; санитарно-гигиеническая вода, а также вода, выделяемая техническими системами, например, топливными элементами электрохимического генератора.


Из-за энергетических, объёмных и массовых ограничений на космической станции в настоящее время и в ближайшей перспективе в системах регенерации воды и атмосферы будут использоваться физико-химические процессы. Использование биологических процессов и воспроизведение пищи являются задачами будущего и скорее всего будут реализованы на планетных базах.


Опыт эксплуатации систем жизнеобеспечения российских орбитальных космических станций (ОКС) "Салют" и "Мир" и международной космической станции МКС, основанных на регенерации воды и атмосферы с частичным использованием воды и кислорода из доставляемых запасов, позволил получить данные по балансу воды и кислорода на космической станции и параметрам работы систем регенерации. Использование этих данных позволяет провести проектный анализ систем жизнеобеспечения для перспективных в том числе для межпланетных, космических станций.


В представляемом докладе рассмотрены системы, основанные на физико-химических процессах. Предполагается, что витаминная оранжерея так же будет включена в состав комплекса СЖО. Степень возврата (регенерации) веществ рассмотрена на основе баланса по воде, используемой на потребление, получение электролизного кислорода и другие нужды.

Опыт разработки и эксплуатации систем регенерации воды и атмосферы. Наземные испытания в составе комплекса систем жизнеобеспечения.

В 1967-1968 г.г. в ИМБП был испытан комплекс физико-химических регенерационных систем жизнеобеспечения РСЖО НЛК, укомплектованный системами, разработанными и изготовленными НИИхиммашем. . Структурная схема комплекса РСЖО НЛК представлена на рис.1 (вариант А). Физико-химические регенерационные системы в течение года обеспечивали жизнедеятельность экипажа из трёх человек, находившихся в герметичном макете межпланетного корабля. В составе комплекса работали системы регенерации воды из конденсата атмосферной влаги, урины и санитарно-гигиенической воды; система электролизного получения кислорода из регенерированной воды; система очистки атмосферы от микропримесей; системы очистки атмосферы от углекислого газа и его концентрирования; система утилизации углекислого газа путём его разложения на воду и метан по методу Сабатье. Была экспериментально подтверждена принципиальная возможность длительного регенерационного жизнеобеспечения, человека, находящегося в замкнутом ограниченном пространстве.

На основании этих исследований и дальнейших работ по созданию и эксплуатации лётных систем сформировались основные методы регенерации воды и атмосферы. В настоящее время реализуются следующие методы. Для регенерации воды из конденсата атмосферной влаги используется сорбционно-каталитический метод с последующей минерализацией, консервацией серебром и пастеризацией очищенной воды. Извлечение воды из мочи осуществляется путём дистилляции с сорбционно-каталитической очисткой дистиллята.

Регенерация санитарно-гигиенической воды производится путём фильтрации с последующей сорбционной доочисткой. Получение кислорода производится путём электролиза водного раствора щёлочи с использованием воды, регенерированной из урины. Очистка атмосферы от микропримесей осуществляется сорбционно-каталитическим методом на регенерируемых сорбентах. Очистка от углекислого газа путём сорбции на регенерируемых сорбентах с его концентрированием при регенерации сорбентов. Переработка углекислого газа методом гидрирования водородом по реакции Сабатье с получением воды и метана. Для реализации этих методов разработана малогабаритная аппаратура, работоспособная в условиях космического полёта. Особо следует отметить аппаратуру для осуществления процессов гидродинамики и тепломассообмена в газожидкостных средах в условиях невесомости.

Рис.1. Структурная схема комплекса регенерационных систем жизнеобеспечения космической станции.

A. Наземный комплекс РСЖО НЛК: все системы, представленные на рисунке.
B. Комплекс РСЖО ОКС "Мир": позиции 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15, 16, 17.
C. Комплекс РСЖО МКС: позиции 1, 2, 4, 5, 9, 10, 11, 14, 15, 16, 17.
D. Комплекс РСЖО перспективной станции: все системы, представленные на рисунке.

Регенерация воды из конденсата атмосферной влаги на станциях "Салют"

Для использования в полёте первоначально были разработаны системы регенерации воды из конденсата атмосферной влаги СРВ-К для долговременных орбитальных станций "Салют". В январе 1975 г. впервые в мировой практике пилотируемых полётов экипаж космической станции "Салют-4" в составе А.А. Губарева и Г.М. Гречко использовал регенерированную из конденсата воду для питья и приготовления пищи и напитков. Система работала в течение всего пилотируемого полёта станции. Аналогичные системы типа СРВ-К работали на станциях "Салют-6" (1977-1981гг.- 570 суток) и "Салют-7" (1982-1986 гг.- 743 суток). Система СРВ-К совместно с системой запасов обеспечивала станцию водой и наряду с функцией регенерации осуществляла очистку воды с просроченными запасами, подогрев воды запасов и получение горячей воды для санитарно-гигиенических процедур .

Жизнеобеспечение экипажей космической станции "Мир"

На орбитальной космической станции ОКС "Мир" впервые в мировой практике был реализован практически полный (за исключением системы концентрирования и утилизации углекислого газа) комплекс физико-химических систем регенерации воды и атмосферы, который в значительной мере обеспечил длительное и эффективное функционирование станции в пилотируемом режиме . Структурная схема жизнеобеспечения представлена на рисунке 1 (вариант В). Регенерация воды из конденсата атмосферной влаги, урины и санитарно-гигиенической воды осуществлялась в отдельных системах, а кислород для дыхания получали методом электролиза воды, регенерированной из урины. Очистка атмосферы от микропримесей осуществлялась в системе СОА-МП; очистка атмосферы от углекислого газа проводилась в системе "Воздух". Вода запасов доставлялись на станцию грузовыми кораблями "Прогресс" в баках системы "Родник" и ёмкостях ЕДВ. После начала российско-американского сотрудничества вода, образующаяся в топливных элементах космических кораблей "Шаттл", передавалась на станцию "Мир" для питья и получения электролизного кислорода. Системы регенерации обеспечили получение качественной воды и кислорода и чистоту атмосферы в течение всего полета станции. Некоторые характеристики систем представлены в таблице 1. Система СРВ-К работала в базовом модуле весь период пилотируемого полёта с 16.03.86 по 27.08.99; системы СПК-У, СРВ-У и СОА МП работали в модуле "Квант 2" с 16.01.90 по 27.08.99; система "Электрон-В" работала попеременно в модулях "Квант 1" и "Квант 2" весь период полёта, система "Воздух" работала в модуле "Квант 1" с апреля 1987 г до конца полёта, система СРВ-СГ работала кратковременно только для подтверждения работоспособности.

Как видно, массозатраты при регенерации воды и атмосферы значительно ниже, чем массозатраты при её доставке на космическую станцию. Удельные затраты массы при регенерации воды из конденсата атмосферной влаги и для получения кислорода составили 0,14 кг массы системы на 1 кг получаемой воды или кислорода. Удельные затраты массы при очистке атмосферы от углекислого газа составили 0,08 кг массы системы на 1 кг удаляемого СО 2 .

Массозатраты при доставке 1 кг воды составляют с учетом массы тары - 1,25 кг/л H 2 O; при доставке кислорода - 2,8 кг/кг O 2 и 2,1 кг/кг СО 2 при доставке расходуемых материалов для очистки атмосферы от СО 2 нерегенерируемыми поглотителями. В процессе эксплуатации станции "Мир" за счет работы систем регенерации получена экономия массы доставляемых грузов 58650 кг. Следует также отметить уникально малые затраты энергии особенно в системах регенерации воды типа СРВ-К и СРВ-СГ: 2 Втч/л воды и 8 Втч/л воды соответственно.

Жизнеобеспечение экипажей международной космической станции МКС

Аналогичный комплекс жизнеобеспечения (рис. 1, вариант С), включая системы концентрирования и утилизации углекислого газа и витаминную оранжерею и регенерацию воды из этих систем, предполагалось постадийно воплотить на Международной космической станции МКС . В настоящее время в составе служебного модуля СМ работают усовершенствованные системы регенерации воды из конденсата атмосферной влаги СРВ-К2М, приёма и консервации урины СПК-УМ (1-я часть системы регенерации воды из урины), электролизного получения кислорода "Электрон-ВМ", очистки от микропримесей СОА-МП и очистки от углекислого газа "Воздух".

Характеристики усовершенствованных систем значительно лучше, чем у систем, работавших на станции "Мир". Значительно увеличена производительность систем, снижены массо- и энергозатраты. Производительность системы "Электрон-ВМ" увеличена по сравнению с системой "Электрон-В" в 2 раза и составляет 160 нл О 2 в час (для обеспечения 6 человек). В систему очистки от микропримесей, первоначально включавшую регенерируемый адсорбер ЗПЛ, нерегенерируемый адсорбер ФОА и низкотемпературный каталитический фильтр ПКФ, введён с 24.10.2003 г. высокотемпературный каталитический фильтр ПКФ-Т, обеспечивающий периодическую высокотемпературную каталитическую очистку атмосферы от метана. В системах СРВ-К2М и "Электрон-ВМ" удельные затраты массы на получение (поглощение) целевого продукта снизились, в 1,5 - 2 раза до 0,08 кг/кг и 0,07 кг/кг соответственно. Основные характеристики работы систем регенерации воды на международной космической станции МКС с 2.11.00. (начало пилотируемого полёта) по 1.06.10. приведены в таблице 2 . В системе СРВ-К2М регенерировано до питьевых кондиций 12970 литров конденсата атмосферной влаги, что составляет 63% от расхода питьевой воды и 44% от общего расхода воды на станции. В системах "Электрон-ВМ" и "Воздух" получено 5835 кг кислорода и поглощено 10250 кг углекислого газа. Работа систем позволила сэкономить более 50000 кг массы доставок воды и оборудования, т.е. несколько пусков грузовых кораблей "Прогресс".

Примечания. * - расшифровка в перечне условных обозначений и сокращений; **с учётом нагрева воды; ***- потребление воды запасов -16660 л, общее потребление воды на станции - 29630л, ****-для 6 человек.

Эффективность работы комплекса СЖО может быть существенно повышена при повышении степени его замкнутости. За рассматриваемый период на российском сегменте МКС собрано и удалено 15300 литров мочи со смывной водой. При коэффициенте извлечения воды 0,9 количество регенерированной в СРВ-УМ воды составило бы 13770 литров при собственной массе системы 15% от массы полученной воды. На МКС также собрано и удалено 10250 кг углекислого газа. В системе переработки углекислого газа по реакции Сабатье можно было бы получить, используя водород из системы "Электрон-ВМ", около 4610 литров воды. Получение на борту дополнительных 18380 литров воды практически обеспечивает баланс станции по воде и кислороду. Таким образом, одним из приоритетных направлений развития российского сегмента МКС и перспективных станций является введение в состав СЖО систем регенерации воды из урины и систем концентрирования и переработки углекислого газа. Это позволит снизить массу доставок воды, повысить надёжность водообеспечения и автономность полёта станции, при этом расширятся возможности доставки научного оборудования.

Качество воды и атмосферы

В настоящее время накоплен большой опыт по оценке качества регенерированной воды и воды запасов. По окончании каждой экспедиции, при экспедициях посещения и при совместных полётах с кораблями "Шаттл" отбирались и доставлялись на Землю пробы конденсата атмосферной влаги, регенерированной воды и воды из системы запасов. В таблице 3 приведены обобщённые данные за весь рассматриваемый период полёта МКС. Как видно, несмотря на относительно высокое содержание органических примесей в конденсате регенерированная вода полностью удовлетворяет нормативам. Питьевая вода запасов сохраняет свой состав и соответствует всем требованиям нормативов. Периодически проводимые американскими астронавтами непосредственно на борту станции бактериологические анализы показали, что в регенерированной воде и в воде запасов микрофлора практически отсутствует. Приведённые данные убедительно подтверждают химическую и бактериологическую безопасность воды на космической станции. Содержание примесей в атмосфере станции не превышает нормативы. Содержание основных примесей в электролизном кислороде приведено в таблице 4 . Как видно, качество кислорода полностью удовлетворяет предъявляемым требованиям.

Перспективы развития комплекса регенерационных систем жизнеобеспечения

На основе опыта разработки и эксплуатации систем регенерации воды и атмосферы в докладе рассмотрена перспективная физико-химическая система регенерационного жизнеобеспечения межпланетной станции. Рассмотрим в качестве примера регенерационное жизнеобеспечение космической станции на лунной орбите с экипажем до 4 человек. Доставка грузов на такую станцию чрезвычайно сложна, поэтому оптимальным для данной цели является практически замкнутый по воде и кислороду комплекс регенерационных СЖО. Комплекс представлен на рис.1 (вариант D) и включает все приведённые на схеме физико-химические системы регенерации, санитарно-гигиеническое оборудование и витаминную оранжерею с освещенной площадью 0,4 м² . Используются запасы пищи, содержащей 0,6 кг на человека в сутки сухого вещества и 0,5 кг на человека в сутки воды. Технический баланс по воде приведен в таблице 5. Первая колонка в правой и левой части таблицы относится к структуре СЖО МКС с минимальными потребностями в воде. Колонка 2 учитывает потребности в воде витаминной оранжереи и в воде для мытья и стирки. Колонка 1.2 характеризует первый этап развития СЖО при введении системы регенерации воды из урины и систем концентрирования и переработки СО 2 (по методу Сабатье). Колонка 2 характеризует второй этап развития СЖО при введении санитарно-гигиенического оборудования, витаминной оранжереи и соответствующих систем регенерации воды. Оценочный расчёт массы и энергопотребления комплекса СЖО по этому варианту представлен в таблице 6. На основании анализа возможностей увеличения ресурса блоков и оборудования систем регенерации удельные затраты массы на 1 кг получаемого продукта снижены до значений, приведённых в таблице. Нагрузка на системы принята на основании баланса веществ, приведенного в таблице 5.

Потребление, выделение и возможности возврата веществ на космической станции (для 1-го космонавта в сутки)

Потери воды и атмосферы и расход азота для продувки капсулы системы "Электрон-ВМ", точные значения которых не известны, не учитывались. Не учтён также расход воды и атмосферы для скафандров. Удельные массы доставляемых запасов воды приняты 1,3 кг/кг Н 2 О, кислорода - 3 кг/кг О 2 . Аварийные запасы принимались а 90 суток из расчёта потребностей в кислороде и азоте (5 кг/чел-сутки) и воде (4 кг/чел-сутки). Использованы американские данные по массозатратам на энергопитание и отвод тепла в системе обеспечения теплового режима: 230 кг/кВт и 146 кг/кВт соответственно . Принималось что количество отведённого тепла эквивалентно затратам электрической энергии, суммарный учёт 0,4 кг/Вт. При расчёте энергопотребления систем СРВ-К и СРВ-СГ учитывались затраты на нагрев воды. Следует ещё раз подчеркнуть, что в соответствии с направленностью доклада рассматривались затраты массы и энергии на регенерацию воды и атмосферы. Остальные статьи затрат на жизнеобеспечение: кондиционирование воздуха, пища, санитарно-гигиеническое и медицинское оборудование, системы для внекорабельной деятельности и т.д. не рассматривались.

Расчётные затраты массы и энергии для пребывания 4-х человек на лунной орбите в течение года составили:
- на регенерацию воды и водообеспечение 2810 кг оборудования и запасов воды и 280 Вт электрической энергии (среднесуточно);
- на регенерацию и запасы атмосферы 2630 кг оборудования и запасов кислорода и азота и 1740 Вт электрической энергии (среднесуточно).
Суммарные затраты на регенерацию воды и атмосферы и запасы составили 5440 кг (оборудования и запасов воды, кислорода и азота) и 2020 Вт электрической энергии (среднесуточно).

Масса аварийных запасов сравнима с затратами на регенерацию, поэтому необходимо обеспечить технические предпосылки для её снижения. Особое внимание следует обратить на коэффициенты регенерации веществ и на минимизацию потерь воды и атмосферы, которые непосредственно влияют на расход запасов (при расчётах эти потери не учитывались). Основным направлением развития комплексов СЖО является повышение их замкнутости и надёжности. Для повышения надёжности в комплекс СЖО должны входить не только запасные агрегаты, но и дублирующие системы, обеспечивающие экипаж водой и атмосферой при неисправности основных систем. С увеличением длительности и автономности полёта решающее значение приобретают увеличение ресурса оборудования, обеспечение ремонтопригодности, снижение затрат массы и энергопотребления систем и уменьшение занимаемого ими объёма. Необходимы повышение эффективности существующих и разработка новых процессов регенерации воды и атмосферы.

*С учётом дополнительных блоков и резервной подсистемы. **С учётом аварийного запаса.

В настоящее время системы и комплексы СЖО, полностью удовлетворяющие указанным требованиям, отсутствуют. Для их создания необходимо проведение целенаправленных научно-исследовательских и опытно-конструкторских работ. Важнейшей стадией проверки новых технологических процессов и систем для длительных автономных полётов являются их испытания и отработка на международной космической станции МКС.

При организации планетных баз следует обеспечить постепенный переход от работающего при невесомости оборудования межпланетных кораблей к более простому оборудованию, использующему гравитацию планет. Отдельной задачей является разработка процессов и систем, использующих планетные ресурсы.

Выводы

1. Созданы регенерационные системы жизнеобеспечения, успешно работавшие на Российских космических станциях "Салют", "Мир" и в настоящее время на МКС, обеспечивая длительное пребывание космонавтов на станции и значительный технико-экономический эффект.

2. Проведенный анализ, использующий достигнутый опыт, подтверждает техническую возможность создания комплекса систем жизнеобеспечения, основанного на регенерации воды и атмосферы, для лунной орбитальной космической станции.

3. Для решения этой задачи необходимо повысить степень замкнутости комплекса СЖО за счёт повышения коэффициентов извлечения воды и введения в состав СЖО систем регенерации воды из урины, концентрирования и переработки углекислого газа.

На втором этапе совершенствования комплекса СЖО необходимо повысить его комфортность и ввести санитарно-гигиеническое оборудование, витаминную оранжерею и соответствующие системы регенерации воды.

4. Создание комплексов систем жизнеобеспечения для перспективных миссий требует разработки усовершенствованной аппаратуры, систем и технологий, позволяющих увеличить надёжность регенерации и значительно снизить расход массы на получение целевых продуктов. Необходимо также разработать и внедрить резервные системы, обеспечивающие функциональное дублирование основных систем в нештатных ситуациях.

Кислородная свеча – это устройство которое при помощи химической реакции позволяет получить кислород пригодный для потребления живыми организмами. Разработана технология группой ученых из России и Нидерландов. Широко используется спасательными службами многих стран, также самолетах, космических станциях вроде МКС. Главные достоинства этой разработки это компактность и легкость.

Кислородная свеча в космосе

На борту МКС кислород является очень важным ресурсом. Но что будет если во время аварии или при случайной поломке перестанут работать системы жизнеобеспечения, в том числе система подачи кислорода? Все живые организмы на борту просто не смогут дышать и умрут. Поэтому специально для таких случаев на в космонавтов присутствует довольно внушительный запас химических кислородных генераторов, если говорить проще то это кислородные свечи . Как работает и использование подобного устройства в космосе, в общих чертах показали в фильме “Живое”.

Откуда берется кислород в самолете

В самолетах также используют кислородные генераторы на химической основе. Если борт будет разгерметизирован или случится другая поломка, возле каждого пассажира выпадает кислородная маска. Маска будет вырабатывать кислород в течение 25 минут, после чего химическая реакция остановится.

Как работает?

Кислородная свеча в космосе состоит из перхлората калия или хлората. В самолетах используют в большинстве случаев перекись бария или хлорат натрия. Также присутствует генератор зажигания и фильтр для охлаждения и очистки от других не нужных элементов.