Правила определения валентности и степени окисления. Валентность и степень окисления Электроотрицательность степень окисления строения вещества

Глава 3. ХИМИЧЕСКАЯ СВЯЗЬ

Способность атома химического элемента присоединять или замещать определенное число атомов другого элемента с образованием химической связи называется валентностью элемента .

Валентность выражается целым положительным числом, лежащим в интервале от I до VIII. Валентности, равно 0 или больше VIII нет. Постоянную валентность проявляют водород (I), кислород (II), щелочные металлы – элементы первой группы главной подгруппы (I), щелочноземельные элементы – элементы второй группы главной подгруппы (II). Атомы других химических элементов проявляют переменную валентность. Так, переходные металлы – элементы всех побочных подгрупп – проявляют от I до III. Например, железо в соединениях может быть двух- или трехвалентным, медь – одно- и двухвалентна. Атому остальных элементов могут проявлять в соединениях валентность, равную номеру группы и промежуточные валентности. Например, высшая валентность серы равна IV, низшая – II, а промежуточные – I, III и IV.

Валентность равна числу химических связей, которыми атом химического элемента связан с атомами других элементов в химическом соединении. Химическая связь обозначается черточкой (–). Формулы, которые показывают порядок соединения атомов в молекуле и валентность каждого элемента называются графическими.

Степень окисления – это условный заряд атома в молекуле, вычис­ленный в предположении, что все связи имеют ионный характер. Это означает, что более электроотрицательный атом, смещая к себе полностью одну электронную пару, приобретает заряд 1–. Не­полярная ковалентная связь между одинаковыми атомами не дает вклада в степень окисления.

Для вычисления степени окисления элемента в соединении следует исходить из следующих положений:

1) степени окисления элементов в простых веществах принимается равными нулю (Na 0 ; О 2 0);

2) алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, равна нулю, а в сложном ионе эта сумма равна заряду иона;

3) постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов, цинка, кадмия (+2);

4) степень окисления водорода в соединениях +1, кроме гидридов металлов (NaH и т.п.), где степень окисления водорода –1;

5) степень окисления кислорода в соединениях –2, кроме пероксидов (–1) и фторида кислорода OF 2 (+2).

Максимальная положительная степень окисления элемента обычно совпадает с номером его группы в периодической системе. Максимальная отрицательная степень окисления элемента равна максимальной положительной степени окисления минус восемь.

Исключение составляют фтор, кислород, железо: их высшая сте­пень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе.

Атомы химических элементов (кроме благородных газов) могут взаимодействовать между собой или с атомами других элементов образуя б.м. сложные час­тицы – молекулы, молекулярные ионы и свободные радикалы. Химическая связь обусловлена элек­тростатическими силами между атомами, т.е. силами взаимодействия электронов и ядер атомов. В образовании химической связи между атомами главную роль играют валентные электроны , т.е. электроны, расположенные на внешней оболоч­ке.

Атомы различных химических элементов могут присоединять разное число других атомов, т. е. проявлять разную валентность.

Валентность характеризует способность атомов соединяться с другими атомами. Теперь, изучив строение атома и виды химической связи, можно более подробно рассмотреть это понятие.

Валентностью называют число одинарных химических связей, которые атом образует с другими атомами в молекуле. Под числом химических связей понимают число общих электронных пар. Так как общие пары электронов образуются только в случае ковалентной связи, то валентность атомов можно определить только в ковалентных соединениях.

В структурной формуле молекулы химические связи изображают черточками. Число черточек, отходящих от символа данного элемента, и есть его валентность. Валентность всегда имеет положительное целое значение от I до VIII.

Как вы помните, высшая валентность химического элемента в оксиде обычно равна номеру группы, в которой он находится. Чтобы определить валентность неметалла в водородном соединении, нужно из 8 вычесть номер группы.

В простейших случаях валентность равна числу неспаренных электронов в атоме, поэтому, например, кислород (содержит два неспаренных электрона) имеет валентность II, а водород (содержит один неспаренный электрон) – I.

В ионных и металлических кристаллах нет общих пар электронов, поэтому для этих веществ понятие валентности как числа химических связей не имеет смысла. Для всех классов соединений, независимо от вида химических связей, применимо более универсальное понятие, которое называют степенью окисления.

Степень окисления

это условный заряд на атоме в молекуле или кристалле. Его вычисляют, полагая, что все ковалентные полярные связи имеют ионный характер.

В отличие от валентности, степень окисления может быть положительной, отрицательной или равной нулю. В простейших ионных соединениях степени окисления совпадают с зарядами ионов.

Например, в хлориде калия KCl (K + Cl - ) калий имеет степень окисления +1, а хлор -1, в оксиде кальция CaO (Ca +2 O -2 ) кальций проявляет степень окисления +2, а кислород -2. Это правило распространяется на все основные оксиды: в них степень окисления металла равна заряду иона металла (натрия +1, бария +2, алюминия +3), а степень окисления кислорода равна -2. Степень окисления обозначают арабской цифрой, которую ставят над символом элемента, подобно валентности:

Cu +2 Cl 2 -1 ; Fe +2 S -2

Степень окисления элемента в простом веществе принимают равной нулю:

Na 0 , O 2 0 , S 8 0 , Cu 0

Рассмотрим, как определяют степени окисления в ковалентных соединениях.

Хлороводород HCl вещество с полярной ковалентной связью. Общая электронная пара в молекуле HCl смещена к атому хлора, имеющему большую электроотрицательность. Мысленно трансформируем связь H-Cl в ионную (это действительно происходит в водном растворе), полностью сместив электронную пару к атому хлора. Он приобретет заряд -1, а водород +1. Следовательно, хлор в этом веществе имеет степень окисления -1, а водород +1:

Реальные заряды и степени окисления атомов в молекуле хлороводорода

Степень окисления и валентность – родственные понятия. Во многих ковалентных соединениях абсолютная величина степени окисления элементов равна их валентности. Существует, однако, несколько случаев, когда валентность отлична от степени окисления. Это характерно, например, для простых веществ, где степень окисления атомов равна нулю, а валентность – числу общих электронных пар:

O=O.

Валентность кислорода равна II, а степень окисления 0.

В молекуле пероксида водорода

H-O-O-H

кислород двухвалентен, а водород одновалентен. В то же время степени окисления обоих элементов по абсолютной величине равны 1:

H 2 +1 O 2 -1

Один и тот же элемент в разных соединениях может иметь как положительные, так и отрицательные степени окисления в зависимости от электроотрицательности связанных с ним атомов. Рассмотрим, например, два соединения углерода – метан CH 4 и фторид углерода(IV) CF 4 .

Углерод более электроотрицателен, чем водород, поэтому в метане электронная плотность связей С–Н смещена от водорода к углероду, и каждый из четырех атомов водорода имеет степень окисления +1, а атом углерода -4. Напротив, в молекуле CF4 электроны всех связей смещены от атома углерода к атомам фтора, степень окисления которых равна -1, следовательно, углерод находится в степени окисления +4. Запомните, что степень окисления самого электроотрицательного атома в соединении всегда отрицательна.


Модели молекул метана CH 4 и фторида углерода(IV) CF 4 . Полярность связей обозначена стрелками

Любая молекула электронейтральна, поэтому сумма степеней окисления всех атомов равна нулю. Используя это правило, по известной степени окисления одного элемента в соединении можно определить степень окисления другого, не прибегая к рассуждениям о смещении электронов.

В качестве примера возьмем оксид хлора(I) Cl 2 O. Исходим из электронейтральности частицы. Атом кислорода в оксидах имеет степень окисления –2, значит, оба атома хлора несут суммарный заряд +2. Отсюда следует, что на каждом из них заряд +1, т. е. хлор имеет степень окисления +1:

Cl 2 +1 O -2

Для того чтобы правильно расставить знаки степени окисления разных атомов, достаточно сравнить их электроотрицательности. Атом с большей электроотрицательностью будет иметь отрицательную степень окисления, а с меньшей – положительную. Согласно установленным правилам, символ наиболее электроотрицательного элемента записывают в формуле соединения на последнем месте:

I +1 Cl -1 , O +2 F 2 -1 , P +5 Cl 5 -1

Реальные заряды и степени окисления атомов в молекуле воды

При определении степеней окисления элементов в соединениях соблюдают следующие правила.

Степень окисления элемента в простом веществе равна нулю.

Фтор – самый электроотрицательный химический элемент, поэтому степень окисления фтора во всех веществах, кроме F2, равна -1.

Кислород – самый электроотрицательный элемент после фтора, поэтому степень окисления кислорода во всех соединениях, кроме фторидов, отрицательна: в большинстве случаев она равна -2, а в пероксиде водорода H 2 O 2 -1 .

Степень окисления водорода равна +1 в соединениях с неметаллами, -1 в соединениях с металлами (гидридах); нулю в простом веществе H 2 .

Степени окисления металлов в соединениях всегда положительны. Степень окисления металлов главных подгрупп, как правило, равна номеру группы. Металлы побочных подгрупп часто имеют несколько значений степени окисления.

Максимально возможная положительная степень окисления химического элемента равна номеру группы (исключение – Cu +2).

Минимальная степень окисления металлов равна нулю, а неметаллов – номеру группы минус восемь.

Сумма степеней окисления всех атомов в молекуле равна нулю.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества
  • Решение расчетных задач на основе количественных характеристик вещества и стехиометрических законов
  • Решение расчетных задач на основе законов газового состояния вещества
  • Электронная конфигурация атомов. Строение электронных оболочек атомов первых трех периодов

В химии широко применяется понятие электроотрицательности (ЭО) — свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электроотрицательностью. Электроотрицательность лития условно принимается за единицу, ЭО других элементов вычисляют соответственно. Имеется шкала значений ЭО элементов.

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина . Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства. По ЭО элементы можно записать следующим образом:

F > O > Cl > Br > S > P > C > H > Si > Al > Mg > Ca > Na > K > Cs

Наибольшее значение ЭО имеет фтор. Сопоставляя значения ЭО элементов от франция (0,86) до фтора (4,1), легко заметить, что ЭО подчиняется Периодическому закону. В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах - уменьшается (сверху вниз). В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи.

Если величина Δ X = 0 – связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 – 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 – 0,93) = 2,23.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом . Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка расположена близко к ядру.


Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов.
Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем “добирать” электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.


Степень окисления

Сложные вещества, состоящие из двух химических элементов, называют бинарными (от лат. би - два), или двухэлементными (NaCl, HCl). В случае ионной связи в молекуле NaCl атом натрия передает свой внешний электрон атому хлора и превращается при этом в ион с зарядом +1, а атом хлора принимает электрон и превращается в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

При химическом взаимодействии в молекуле HCl общая электронная пара смещается в сторону более электроотрицательного атома. Например,, т. е. электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов δ: Н +0.18 Сl -0.18 . Если же представить, что и в молекуле HCl, как и в хлориде NaCl, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды +1 и -1:

Такие услов­ные заряды называют степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связую­щие электроны полностью перешли к более элек­троотрицательному атому, а потому соединения со­стоят только из положительно и отрицательно заряженных атомов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов. Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно ставится над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т. е. атомы более электроотрицательных элементов . Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т. е. атомы менее электроотрицательных элементов . Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии, например:

В соединениях суммарная степень окисления всегда равна нулю.

Валентность

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

Числом неспаренных электронов (одноэлектронных орбиталей);

Наличием свободных орбиталей;

Наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей. Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4.

Постоянные валентности:

  • H, Na, Li, К, Rb, Cs — Степень окисления I
  • О, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd — Степень окисления II
  • B, Al, Ga, In — Степень окисления III

Переменные валентности:

  • Сu - I и II
  • Fe, Со, Ni -II и III
  • С, Sn, Pb - II и IV
  • P- III и V
  • Cr - II, III и VI
  • S - II, IV и VI
  • Mn-II, III, IV, VI и VII
  • N-II, III, IV и V
  • Cl-I, IV, VI и VII

Используя валентности можно составить формулу соединения.

Химическая формула — это условная запись состава вещества посредством химических знаков и индексов.

Например: Н 2 O-формула воды, где Н и О-химические знаки элементов, 2 — индекс, который показывает число атомов данного элемента, входящих в состав молекулы воды.

При названии веществ с переменной валентностью обязательно указывается его валентность, которая ставится в скобки. Например, Р 2 0 5 — оксид фосфора (V)

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю — Na 0 , Р 4 0 , О 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0. а в сложном ионе его заряду.

Например:

Разберем для примера несколько соединений и узнаем валентность хлора :

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Электроотрицательность, степень окисления и валентность химических элементов

Электроотрицательность

В химии широко применяется понятие электроотрицательности (ЭО) .

Свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электроотрицательностью.

Электроотрицательность лития условно принимается за единицу, ЭО других элементов вычисляют соответственно. Существует шкала значений ЭО элементов.

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина. Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства. По ЭО элементы можно записать следующим образом:

$F > O > Cl > Br > S > P > C > H > Si > Al > Mg > Ca > Na > K > Cs$. Наибольшее значение ЭО имеет фтор.

Сопоставляя значения ЭО элементов от франция $(0,86)$ до фтора $(4,1)$, легко заметить, что ЭО подчиняется Периодическому закону.

В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах — уменьшается (сверху вниз).

В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Степень окисления

Сложные вещества, состоящие из двух химических элементов, называют бинарными (от лат. би — два ), или двухэлементными.

Вспомним типичные бинарные соединения, которые приводились в качестве примера для рассмотрения механизмов образования ионной и ковалентной полярной связи: $NaCl$ — хлорид натрия и $HCl$ — хлороводород. В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом $+1$, а атом хлора принял электрон и превратился в ион с зарядом $-1$. Схематически процесс превращения атомов в ионы можно изобразить так:

${Na}↖{0}+{Cl}↖{0}→{Na}↖{+1}{Cl}↖{-1}$.

В молекуле же $HCl$ связь образуется за счет спаривания неспаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного $s$-облака атома водорода одноэлектронным $р$-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора: ${H}↖{δ+}→{Cl}↖{δ−}$, т.е. электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов $δ$: $H^{+0,18}Cl^{-0,18}$. Если же представить, что и в молекуле $HCl$, как и в хлориде $NaCl$, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды $+1$ и $-1$: ${H}↖{+1}{Cl}↖{−1}. Такие условные заряды называют степенью окисления. При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных атомов.

Степень окисления — это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно ставится над символом элемента сверху, например:

${Na_2}↖{+1}{S}↖{-2}, {Mg_3}↖{+2}{N_2}↖{-3}, {H_3}↖{-1}{N}↖{-3}, {Cl_2}↖{0}$.

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т.е. атомы более электроотрицательных элементов.

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т.е. атомы менее электроотрицательных элементов.

Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии.

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, всегда можно найти степень окисления другого элемента по формуле бинарного соединения. Например, найдем степень окисления хлора: $Cl_2O_7$. Обозначим степень окисления кислорода: ${Cl_2}{O_7}↖{-2}$. Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд $(-2)·7=-14$. Тогда общий заряд двух атомов хлора равен $+14$, а одного атома хлора $(+14):2=+7$.

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например, карбида алюминия (соединения алюминия и углерода). Запишем знаки алюминия и углерода рядом — $AlC$, причем сначала — знак алюминия, т.к. это металл. Определим по таблице элементов Менделеева число внешних электронов: у $Al$ — $3$ электрона, у $С$ — $4$. Атом алюминия отдаст свои три внеш них электрона углероду и получит при этом степень окисления $+3$, равную заряду иона. Атом углерода, наоборот, примет недостающие до «заветной восьмерки» $4$ электрона и получит при этом степень окисления $-4$. Запишем эти значения в формулу $({Al}↖{+3}{C}↖{-4})$ и найдем наименьшее общее кратное для них, оно равно $12$. Затем рассчитаем индексы:

Валентность

Очень важное значение в описании химического строения органических соединений имеет понятие валентности.

Валентность характеризует способность атомов химических элементов к образованию химических связей; она определяет число химических связей, которыми данный атом соединен с другими атомами в молекуле.

Валентность атома химического элемента определяется, в первую очередь, числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

  • числом неспаренных электронов (одноэлектронных орбиталей);
  • наличием свободных орбиталей;
  • наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

Среди химических реакций, в том числе и в природе, окислительно-восстановительные реакции являются самыми распространенными. К их числу относятся, например, фотосинтез, обмен веществ, биологические процессы, а также сжигание топлива, получение металлов и многие другие реакции. Окислительно-восстановительные реакции издавна успешно использовались человечеством в различных целях, но сама электронная теория окислительно-восстановительных процессов появилась совсем недавно – в начале XX века.

Для того чтобы перейти к современной теории окисления-восстановления, необходимо ввести несколько понятий – это валентность, степень окисления и строение электронных оболочек атомов . Изучая такие разделы, как , элементов и , мы уже сталкивались с этими понятиями. Далее, рассмотрим их подробнее.

Валентность и степень окисления

Валентность – понятие сложное, которое возникло вместе с понятием химической связи и определяется, как свойство атомов присоединять или замещать определенное число атомов другого элемента, т.е. это способность атомов образовывать химические связи в соединениях. Первоначально валентность определяли по водороду (его валентность принимали равной 1) или кислороду (валентность равна 2). Позднее стали различать положительную и отрицательную валентность. Количественно, положительная валентность характеризуется количеством отданных атомом электронов, а отрицательная валентность – числом электронов, которые необходимо присоединить атому для реализации правила октета (т.е. завершения внешнего энергетического уровня). Позднее понятие валентности, стало сочетать в себе также и природу химических связей, возникающих между атомами в их соединении.

Как правило, высшая валентность элементов соответствует номеру группы в периодической системе. Но, как и во всех правилах, есть исключения: например, медь и золото находятся в первой группе периодической системы и их валентность должна быть равна номеру группы, т.е. 1, но в действительности же высшая валентность меди равна 2, а золота – 3.

Степень окисления иногда называют окислительным числом, электрохимической валентностью или состоянием окисления и является понятием условным. Так, при вычислении степени окисления предполагается допущение, что молекулу составляют только ионы, хотя большинство соединений вовсе не являются ионными. Количественно степень окисления атомов элемента в соединении определяется числом присоединенных к атому или смещенных от атома электронов. Таким образом, при отсутствии смещения электронов степень окисления будет нулевая, при смещении электронов в сторону данного атома – отрицательная, при смещении от данного атома – положительная.

Определяя степень окисления атомов необходимо следовать следующим правилам:

  1. В молекулах простых веществ и металлов степень окисления атомов равна 0.
  2. Водород почти во всех соединениях имеет степень окисления равную +1 (и только в гидридах активных металлов равную -1).
  3. Для атомов кислорода в его соединениях типична степень окисления -2 (исключения: OF 2 и пероксиды металлов, степень окисления кислорода соответственно равна +2 и -1).
  4. Постоянную степень окисления имеют также атомы щелочных (+1) и щелочноземельных (+2) металлов, а также фтора (-1)
  5. В простых ионных соединениях, степень окисления равна по величине и знаку его электрическому заряду.
  6. Для ковалентного соединения, более электроотрицательный атом имеет степень окисления со знаком «-», а менее электроотрицательный – со знаком «+».
  7. Для комплексных соединений указывают степень окисления центрального атома.
  8. Сумма степеней окисления атомов в молекуле равна нулю.

Например, определим степень окисления Se в соединении H 2 SeO 3

Так, степень окисления водорода равна +1, кислорода -2, а сумма всех степеней окисления равна 0, составим выражение, учитывая число атомов в соединении H 2 + Se х O 3 -2:

(+1)2+х+(-2)3=0, откуда

т.е. H 2 + Se +4 O 3 -2

Зная какую величину имеет степень окисления элемента в соединении возможно предсказать его химические свойства и реакционную активность по отношению к другим соединениям, а также является ли данное соединение восстановителем или окислителем . Эти понятия в полной мере раскрываются в теории окисления-восстановления :

  • Окисление – это процесс потери электронов атомом, ионом или молекулой, что приводит к повышению степени окисления.

Al 0 -3e — = Al +3 ;

2O -2 -4e — = O 2 ;

2Cl — -2e — = Cl 2

  • Восстановление – это процесс при котором атом, ион или молекула приобретают электроны, что приводит к понижению степени окисления.

Ca +2 +2e — = Ca 0 ;

2H + +2e — =H 2

  • Окислители – соединения, принимающие электроны в ходе химической реакции, а восстановители – отдающие электроны соединения. Восстановители во время реакции окисляются, а окислители – восстанавливаются.
  • Сущность окислительно-восстановительных реакций – перемещение электронов (или смещение электронных пар) от одних веществ к другим, сопровождающихся изменением степеней окисления атомов или ионов. В таких реакциях один элемент не может окислиться без восстановления другого, т.к. передача электронов всегда вызывает и окисление и восстановление. Таким образом, общее число электронов, отнимаемое при окислении у одного элемента, совпадает с числом электронов, получаемых другим элементом при восстановлении.

Так, если элементы в соединениях находятся в своих высших степенях окисления, то они будут проявлять только окислительные свойства, в связи с тем, что отдавать электроны они уже больше не могут. Напротив, если элементы в соединениях находятся в своих низших степенях окисления, то они проявляют только восстановительные свойства, т.к. присоединять электроны они больше не могут. Атомы элементов в промежуточной степени окисления, в зависимости от условий протекания реакции, могут быть как окислителями, так и восстановителями. Приведем пример: сера в своей высшей степени окисления +6 в соединении H 2 SO 4 , может проявлять только окислительные свойства, в соединении H 2 S – сера находится в своей низшей степени окисления -2 и будет проявлять только восстановительные свойства, а в соединении H 2 SO 3 находясь в промежуточной степени окисления +4, сера может быть как окислителем, так и восстановителем.

На основании значений степеней окисления элементов можно предсказать вероятность реакции между веществами. Понятно, что если оба элемента в своих соединениях находятся в высших или низших степенях окисления, то реакция между ними невозможна. Реакция возможна, если одно из соединений может проявлять окислительные свойства, а другое – восстановительные. Например, в HI и H 2 S как йод, так и сера находятся в своих низших степенях окисления (-1 и -2) и могут быть только восстановителями, следовательно, реагировать друг с другом не будут. Зато они прекрасно будут взаимодействовать с H 2 SO 4 , для которой характерны восстановительные свойства, т.к. сера здесь находится в своей высшей степени окисления.

Важнейшие восстановители и окислители представлены в следующей таблице.

Восстановители
Нейтральные атомы Общая схема M — ne → M n +

Все металлы, а также водород и углерод.Наиболее сильные восстановители – щелочные и щелочно-земельные металлы, а также лантаноиды и актиноиды. Слабые восстановители – благородные металлы – Au, Ag, Pt, Ir, Os, Pd, Ru, Rh.В главных подгруппах периодической системы восстановительная способность нейтральных атомов, растет с увеличением порядкового номера.

отрицательно заряженные ионы неметаллов Общая схема Э + ne — → Э n-

Отрицательно заряженные ионы являются сильными восстановителями, в связи с тем, что они могут отдавать как избыточные электроны, так и свои внешние электроны. Восстановительная способность, при одинаковом заряде, растет с увеличением радиуса атома. Например, I — более сильный восстановитель, чем Br — и Cl — .Восстановителями также могут быть S 2- , Se 2- , Te 2- и другие.

положительно заряженные ионы металлов низшей степени окисления Ионы металлов низшей степени окисления могут проявлять восстановительные свойства, если для них характерны состояния с более высокой степенью окисления. Например,

Sn 2+ -2e — → Sn 4+ Cr 2+ -e — → Cr 3+ Cu + -e — → Cu 2+

Сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления Сложные или комплексные ионы, а также молекулы могут проявлять восстановительные свойства, если входящие в их состав атомы, находятся в промежуточной степени окисления. Например,

SO 3 2- , NO 2 — , AsO 3 3- , 4- , SO 2 , CO, NO и другие.

Углерод, Оксид углерода (II), Железо, Цинк, Алюминий, Олово, Сернистая кислота, Сульфит и бисульфит натрия, Сульфид натрия, Тиосульфат натрия, Водород, Электрический ток
Окислители
Нейтральные атомы Общая схема Э + ne- → Э n-

Окислителями являются атомы р – элементов. Типичные неметаллы – фтор, кислород, хлор. Самые сильные окислители – галогены и кислород. В главных подгруппах 7, 6, 5 и 4 групп сверху вниз окислительная активность атомов понижается

положительно заряженные ионы металлов Все положительно заряженные ионы металлов в разной степени проявляют окислительные свойства. Из них наиболее сильные окислители – это ионы в высокой степени окисления, например, Sn 4+ , Fe 3+ , Cu 2+ . Ионы благородных металлов даже в низкой степени окисления являются сильными окислителями.
Сложные ионы и молекулы, содержащие атомы металла в состоянии высшей степени окисления Типичными окислителями являются вещества, в состав которых входят атомы металла в состоянии наивысшей степени окисления. Например, KMnO4, K2Cr2O7, K2CrO4, HAuCl4.
Сложные ионы и молекулы, содержащие атомы неметалла в состоянии положительной степени окисления В основном это кислородсодержащие кислоты, а также соответствующие им оксиды и соли. Например, SO 3 , H 2 SO 4 , HClO, HClO 3 , NaOBr и другие.

В ряду H 2 SO4 → H 2 SeO4 → H 6 TeO 6 окислительная активность возрастает от серной к теллуровой кислоте.

В ряду HClO — HClO 2 — HClO 3 — HClO 4

HBrO — HBrO 3 —

HIO — HIO 3 — HIO 4 , H5IO 6

окислительная активность увеличивается справа налево, а усиление кислотных свойств происходит слева направо.

Важнейшие восстановители в технике и лабораторной практике Кислород, Озон, Перманганат калия, Хромовая и Двухромовая кислоты, Азотная кислота, Азотистая кислота, Серная кислота (конц), Пероксид водорода, Электрический ток, Хлорноватая кислота, Диоксид марганца, Диоксид свинца, Хлорная известь, Растворы гипохлоритов калия и натрия, Гипобромид калия, Гексацианоферрат (III) калия.
Категории ,