Нулевое решение системы линейных уравнений. Система уравнений

Системы линейных уравнений. Лекция 6.

Системы линейных уравнений.

Основные понятия.

Система видa

называется системой - линейных уравнений с неизвестными .

Числа , , называются коэффициентами системы .

Числа , называются свободными членами системы , – переменными системы . Матрица

называется основной матрицей системы , а матрица

расширенной матрицей системы . Матрицы - столбцы

И - соответственно матрицами свободных членов и неизвестных системы . Тогда в матричной форме систему уравнений можно записать в виде . Решением системы называется значений переменных , при подстановке которых, все уравнения системы обращаются в верные числовые равенства. Всякое решение системы можно представить в виде матрицы - столбца . Тогда справедливо матричное равенство .

Система уравнений называется совместной если она имеет хотя бы одно решение и несовместной если не имеет ни одного решения.

Решить систему линейных уравнений это значит выяснить совместна ли она и в случае совместности найти её общее решение.

Система называется однородной если все её свободные члены равны нулю. Однородная система всегда совместна, так как имеет решение

Теорема Кронекера – Копелли.

Ответ на вопрос существования решений линейных систем и их единственности позволяет получить следующий результат, который можно сформулировать в виде следующих утверждений относительно системы линейных уравнений с неизвестными

(1)

Теорема 2 . Система линейных уравнений (1) совместна тогда и только тогда когда ранг основной матрицы равен рангу расширенной (.

Теорема 3 . Если ранг основной матрицы совместной системы линейных уравнений равен числу неизвестных, то система имеет единственное решение.

Теорема 4 . Если ранг основной матрицы совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.

Правила решения систем.

3. Находят выражение главных переменных через свободные и получают общее решение системы.

4. Придавая свободным переменным произвольные значения получают все значения главных переменных.

Методы решения систем линейных уравнений.

Метод обратной матрицы.

причем , т. е. система имеет единственное решение. Запишем систему в матричном виде

где , , .

Умножим обе части матричного уравнения слева на матрицу

Так как , то получаем , откуда получаем равенство для нахождения неизвестных

Пример 27. Методом обратной матрицы решить систему линейных уравнений

Решение. Обозначим через основную матрицу системы

.

Пусть , тогда решение найдем по формуле .

Вычислим .

Так как , то и система имеет единственное решение. Найдем все алгебраические дополнения

, ,

, ,

, ,

, ,

Таким образом

.

Сделаем проверку

.

Обратная матрица найдена верно. Отсюда по формуле , найдем матрицу переменных .

.

Сравнивая значения матриц, получим ответ: .

Метод Крамера.

Пусть дана система линейных уравнений с неизвестными

причем , т. е. система имеет единственное решение. Запишем решение системы в матричном виде или

Обозначим

. . . . . . . . . . . . . . ,

Таким образом, получаем формулы для нахождения значений неизвестных, которые называются формулами Крамера .

Пример 28. Решить методом Крамера следующую систему линейных уравнений .

Решение. Найдем определитель основной матрицы системы

.

Так как , то , система имеет единственное решение.

Найдем остальные определители для формул Крамера

,

,

.

По формулам Крамера находим значения переменных

Метод Гаусса.

Метод заключается в последовательном исключении переменных.

Пусть дана система линейных уравнений с неизвестными.

Процесс решения по методу Гаусса состоит из двух этапов:

На первом этапе расширенная матрица системы приводится с помощью элементарных преобразований к ступенчатому виду

,

где , которой соответствует система

После этого переменные считаются свободными и в каждом уравнении переносятся в правую часть.

На втором этапе из последнего уравнения выражается переменная , полученное значение подставляется в уравнение. Из этого уравнения

выражается переменная . Этот процесс продолжается до первого уравнения. В результате получается выражение главных переменных через свободные переменные .

Пример 29. Решить методом Гаусса следующую систему

Решение. Выпишем расширенную матрицу системы и приведем ее к ступенчатому виду

.

Так как больше числа неизвестных, то система совместна и имеет бесконечное множество решений. Запишем систему для ступенчатой матрицы

Определитель расширенной матрицы этой системы, составленный из трех первых столбцов не равен нулю, поэтому его считаем базисным. Переменные

Будут базисными а переменная – свободной. Перенесем ее во всех уравнениях в левую часть

Из последнего уравнения выражаем

Подставив это значение в предпоследнее второе уравнение, получим

откуда . Подставив значения переменных и в первое уравнение, найдем . Ответ запишем в следующем виде

В общем случае линейное уравнение имеет вид:

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Пример 20.1

Дать характеристику системе уравнений .

Решение :

1. Входит ли в состав противоречивое уравнение? (Если коэффициенты, в этом случае уравнение имеет вид: и называется противоречивым .)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные . (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной , если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными (), а не входящие в набор — свободными ().

В общем случае разрешенная система уравнений имеет вид:

На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным , если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным , если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Пример 1. Найти общее, базисное и какое-либо частное решение системы уравнений:

Решение :

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения .

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор .

4. Находим частное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

Ответ: частное решение (один из вариантов)

5. Находим базисное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число , а остальные уравнения оставить без изменения, то . (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое , а все остальные уравнения оставить без изменения, то получится система, равносильная данной . (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число , а все остальные уравнения оставить без изменения, то получится система, равносильная данной .

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1
Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти : два общих и два соответствующих базисных решения

Решение :

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Система линейных алгебраических уравнений. Основные термины. Матричная форма записи.

Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.

Под системой линейных алгебраических уравнений (СЛАУ) подразумевают систему

Параметры aij называют коэффициентами , а bi – свободными членами СЛАУ. Иногда, чтобы подчеркнуть количество уравнений и неизвестных, говорят так «m×n система линейных уравнений», – тем самым указывая, что СЛАУ содержит m уравнений и n неизвестных.

Если все свободные члены bi=0 то СЛАУ называют однородной . Если среди свободных членов есть хотя бы один, отличный от нуля, СЛАУ называют неоднородной .

Решением СЛАУ (1) называют всякую упорядоченную совокупность чисел (α1,α2,…,αn), если элементы этой совокупности, подставленные в заданном порядке вместо неизвестных x1,x2,…,xn, обращают каждое уравнение СЛАУ в тождество.

Любая однородная СЛАУ имеет хотя бы одно решение: нулевое (в иной терминологии – тривиальное), т.е. x1=x2=…=xn=0.

Если СЛАУ (1) имеет хотя бы одно решение, ее называют совместной , если же решений нет – несовместной . Если совместная СЛАУ имеет ровно одно решение, её именуют определённой , если бесконечное множество решений – неопределённой .

Матричная форма записи систем линейных алгебраических уравнений.

С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. rangA=rangA˜.

Система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если rangA=rangA˜, то решение есть; если rangA≠rangA˜, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква n, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

    Если rangA≠rangA˜, то СЛАУ несовместна (не имеет решений).

    Если rangA=rangA˜

    Если rangA=rangA˜=n, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения нет, а если существуют – то сколько.

Методы решения СЛАУ

    Метод Крамера

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода Крамера можно выразить в трёх пунктах:

    Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. Δ≠0.

    Для каждой переменной xi необходимо составить определитель Δ X i , полученный из определителя Δ заменой i-го столбца столбцом свободных членов заданной СЛАУ.

    Найти значения неизвестных по формуле xi= Δ X i /Δ

Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

    Записать три матрицы: матрицу системы A, матрицу неизвестных X, матрицу свободных членов B.

    Найти обратную матрицу A -1 .

    Используя равенство X=A -1 ⋅B получить решение заданной СЛАУ.

Метод Гаусса. Примеры решения систем линейных алгебраических уравнений методом Гаусса.

Метод Гаусса является одним из самых наглядных и простых способов решения систем линейных алгебраических уравнений (СЛАУ): как однородных, так и неоднородных. Коротко говоря, суть данного метода состоит в последовательном исключении неизвестных.

Преобразования, допустимые в методе Гаусса:

    Смена мест двух строк;

    Умножение всех элементов строки на некоторое число, не равное нулю.

    Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

    Вычеркивание строки, все элементы которой равны нулю.

    Вычеркивание повторяющихся строк.

Насчет последних двух пунктов: повторяющиеся строки можно вычёркивать на любом этапе решения методом Гаусса, – естественно, оставляя при этом одну из них. Например, если строки №2, №5, №6 повторяются, то можно оставить одну из них, – например, строку №5. При этом строки №2 и №6 будут удалены.

Нулевые строки убираются из расширенной матрицы системы по мере их появления.

Запишите систему линейных алгебраических уравнений в общем виде

Что называется решением СЛАУ?

Решением системы уравнений называется набор из n чисел,

При подстановке которой в систему каждое уравнение обращается в тождество.

Какая система называется совместной (несовместной)?

Система уравнений называется совместной, если она имеет хотя бы одно решение.

Система называется несовместной, если она не имеет решений.

Какая система называется определенной (неопределенной)?

Совместная система называется определенной, если она имеет единственное решение.

Совместная система называется неопределенной, если она имеет больше одного решения.

Матричная форма записи системы уравнений

Ранг системы векторов

Ранг системы векторов называется максимальное число линейно независимых векторов.

Ранг матрицы и способы его нахождения

Ранг матрицы - наивысший из порядков миноров этой матрицы, определитель которых отличен от нуля.

Первый метод –- метод окантовки - заключается в следующем:

Если все миноры 1-го порядка, т.е. элементы матрицы равны нулю, то r=0 .

Если хоть один из миноров 1-го порядка не равен нулю, а все миноры 2-го порядка равны нулю то r=1.

Если минор 2-го порядка отличен от нуля то исследуем миноры 3-го порядка. Таким образом находят минор k-го порядка и проверяют, не равны ли нулю миноры k+1-го порядка.

Если все миноры k+1-го порядка равны нулю, то ранг матрицы равен числу k. Такие миноры k+1-го порядка, как правило, находят путем "окантовки" минора k-го порядка.

Второй метод определения ранга матрицы заключается в применении элементарных преобразований матрицы при возведении ее к диагональному виду. Ранг такой матрицы равно числу отличных от нуля диагональных элементов.



Общее решение неоднородной системы линейных уравнений, его свойства.

Свойство 1. Сумма любого решения системы линейных уравнений и любого решения соответствующей однородной системы является решением системы линейных уравнений.

Свойство 2. Разность любых двух решений неоднородной системы линейных уравнений является решением соответствующей однородной системы.

Метод Гаусса решения СЛАУ


Последовательность:

1)составляется расширенная матрица системы уравнения

2)с помощью элементарных преобразований матрица приводится к ступенчатому виду

3)определяется ранг расширенной матрицы системы и ранг матрицы системы и устанавливается пакт совместимости или несовместимости системы

4)в случае совместимости записывается эквивалентная система уравнения

5)находится решение системы. Главные переменные выражаются через свободные

Теорема Кронекера-Капелли

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Для того чтобы линейная система являлась совместной, необходимо и достаточно, чтобы ранг расширенной матрицы этой системы был равен рангу её основной матрицы.

Когда система не имеет решения, когда имеет единственное решение, имеет множество решений?

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю,значит Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Тема 2. Решение систем линейных алгебраических уравнений прямыми методами.

Системами линейных алгебраических уравнений (сокращенно - СЛАУ) называются системы уравнений вида

или, в матричном виде,

A × x = B , (2.2)

A - матрица коэффициентов системы размерности n ´ n

x - вектор неизвестных, состоящий из n компонент

B - вектор правых частей системы, состоящий из n компонент.

A = x = B = (2.3)

Решением СЛАУ является такой набор из n чисел, который будучи подставленным вместо значений x 1 , x 2 , … , x n в систему (2.1) обеспечивает равенство левых частей правым во всех уравнениях.

Каждая СЛАУ в зависимости от значений матриц A и B может иметь

Одно решение

Бесконечно много решений

Ни одного решения.

В данном курсе будем рассматривать только те СЛАУ, которые имеют единственное решение. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A .

Для поиска решений над системами линейных алгебраических уравнений могут проводиться некоторые преобразования, не изменяющие ее решений. Эквивалентными преобразованиями системы линейных уравнений называются такие ее преобразования, которые не изменяют ее решения. К их числу относятся:

Перестановка местами двух любых уравнений системы (следует отиетить, что в некоторых случаях, рассматриваемых ниже, это преробразование использовать нельзя);

Умножение (или деление) какого-либо уравнения системы на число, не равное нулю;

Прибавление к одному уравнению системы другого ее уравнения, умноженного (или разделенного) на некоторое не равное нулю число.

Методы решения СЛАУ делятся на две больших группы, называемые - прямые методы и итерационные методы . Имеется также способ сведения задачи решения СЛАУ к задаче поиска экстремума функции нескольких переменных с последующем решением ее методами поиска экстремума (об этом подробнее - при прохождении соответствующей темы). Прямые методы обеспечивают получение точного решения системы (если оно существует) за один шаг. Итерационные методы (если при этом обеспечена их сходимость) позволяют многократно улучшать некоторое начальное приближение к искомому решению СЛАУ и, вообще говоря, точного решения не дадут никогда. Однако, учитывая то, что прямые методы решения из-за неизбежных ошибок округления на промежуточных этапах расчетов тоже дают не идеально точные решения, итерационные методы могут тоже обеспечить примерно такой же результат.

Прямые методы решения СЛАУ. Наиболее часто используемыми прямыми методами решения СЛАУ являются:

Метод Крамера,

Метод Гаусса (и его модификация - метод Гаусса-Жордана)

Матричный метод (с использованием обращения матрицы A ).

Метод Крамера основан на вычислении определителя основной матрицы A и определителей матриц A 1 , A 2 , …, A n , которые получаются из матрицы A заменой в ней одного (i -го) столбца (i = 1, 2,…, n ) на столбец, содержащий элементы вектора B . После этого решения СЛАУ определяются как частное от деления значений этих определителей. Точнее, расчетные формулы имеют такой вид

(2.4)

Пример 1 . Найдем методом Крамера решение СЛАУ, у которой

A = , B = .

Имеем

A 1 = , A 2 = , A 3 = , A 4 = .

Вычислим значения определителей всех пяти матриц (c использованием функции МОПРЕД среды Excel ). Получим

Так как определитель матрицы A не равен нулю - система имеет единственное решение. Тогда определим его по формуле (2.4). Получим

Метод Гаусса. Решение СЛАУ этим методом предполагает составление расширенной матрицы системы A * . Расширенная матрица системы - это матрица размером в n строк и n +1 столбцов, включающая в себя исходную матрицу A c присоединенным к ней справа столбцом, содержащим вектор B .

A* = (2.4)

Здесь a in+1 =b i (i = 1, 2, …, n ).

Суть метода Гаусса состоит в приведении (посредством эквивалентных преобразований ) расширенной матрицы системы к треугольному виду (так, чтобы ниже ее главной диагонали находились только нулевые элементы).

A * =

Тогда, начиная с последней строки и двигаясь вверх, можно последовательно определить значения всех компонент решения.

Начало преобразований расширенной матрицы системы к необходимому виду заключается в просмотре значений коэффициентов при x 1 и выборе строки, в которой он имеет максимальное по абсолютной величине значение (это необходимо для уменьшения величины вычислительной ошибки при последующих вычислениях). Эту строку расширенной матрицы необходимо поменять местами с первой ее строкой (или же, что лучше, сложить (или вычесть) с первой строкой и результат поместить на место первой строки). После этого все элементы этой новой первой строки (в том числе и в последнем ее столбце) необходимо разделить на этот коэффициент. После этого вновь полученный коэффициент a 11 станет равным единице. Дальше от каждой из оставшихся строк матрицы необходимо вычесть ее первую строку, умноженную на значение коэффициента при x 1 в этой строке (т.е. на величину a i 1 , где i =2, 3, … n ). После этого во всех строках, начиная со второй коэффициенты при x 1 (т.е. все коэффициенты a i 1 (i =2, …, n ) будут равными нулю. Поскольку мы выполняли только эквивалентные преобразования - решение вновь полученной СЛАУ не будет отличаться от исходной системы.

Дальше, оставляя неизменной первую строку матрицы, проделаем все вышеописанные действия с остальными строками матрицы и, в результате, вновь полученный коэффициент a 22 станет равным единице, а все коэффициенты a i 2 (i =3, 4, …, n ) станут равными нулю. Продолжая аналогичные действия, мы в конечном итоге приведем нашу матрицу к виду, в котором все коэффициенты a ii = 1 (i =1, 2, …, n ), а все коэффициенты a ij = 0 (i =2, 3, …, n , j < i ). Если же на каком-то шаге при поиске наибольшего по абсолютной величине коэффициента при x j мы не сможем найти не равного нулю коэффициента - это будет значить, что исходная система не имеет единственного решения. В этом случае процесс решения необходимо прекратить.

Если процесс эквивалентных преобразований закончился успешно, то полученная в результате «треуголиная» расширенная матрица будет соответствовать такой системе линейных уравнений:

Из последнего уравнения этой системы найдем значение x n . Далее, подставляя это значение в предпоследнее уравнение, найдем значение x n -1 . После этого, подставляя оба эти найденных значения в третье снизу уравнение системы, найдем значение x n -2 . Продолжая так далее и продвигаясь по уравнением этой системы снизу вверх, будем последовательно находить значения других корней. И, наконец, подставляя найденные значения x n , x n -1 , x n -2 , x 3 и x 2 в первое уравнение системы найдем значение х 1 . Такая процедура поиска значений корней по найденной треугольной матрице называется обратным ходом. Процесс приведения исходной расширенной матрицы эквивалентными преобразованиями к треугольному виду назавают прямым ходом метода Гаусса..

Достаточно подробный алгоритм решения СЛАУ методом Гаусса приведен на рис. .2.1 и рис. 2.1а.

Пример 2 . Найти методом Гаусса решение той же СЛАУ, которую мы уже решали методом Крамера. Составим сначала ее расширенную матрицу. Получим

A * = .

Сначала переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Получим

A * = .

A * =

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и, аналогично вышеописаному, обнулим коэффициенты во втором столбце третьей и четвертой строк матрицы. Получим

A * = .

После выполнения подобных действий над третьей и четвертой строками матрицы получим

A * = .

Разделив теперь четвертую строку на -5.3076, закончим проведение расширенной матрицы системы к диагональному виду. Получим




Рис. 2.1. Алгоритм решения систем линейных алгебраических уравнений методом Гаусса



Рис. 2.1а. Макроблок “Расчет значений решения”.

A * = .

Из последней строки сразу получим x 4 = 0.7536. Поднимаясь теперь вверх по строкам матрицы и выполняя расчеты, последовательно получим x 3 = 0.7971, x 2 =- 0.1015 и x 1 = 0.3333. Сравнивая полученное этим методом решение с решением, полученным методом Крамера, нетрудно убедиться в их совпадении.

Метод Гаусса-Жордана. Этот метод решения СЛАУ во многом похож на метод Гаусса. Основным отличием является то, что используя эквивалентные преобразования расширенная матрица системы уравнений приводится не к треугольному виду, а к диагональному виду, на главной диагонали которой находятся единицы, а вне нее (кроме последнего n +1 столбца) - нули. После окончания такого преобразования - последний столбец расширенной матрицы будет содержать решение исходной СЛАУ (т,е. . x i = a i n +1 (i = 1, 2, … , n ) в полученной матрице). Обратный ход (как в методе Гаусса) для окончательных расчетов значений компонент решения - не нужен.

Приведение матрицы к диагональному виду проводится, в основном, также как и в методе Гаусса. Если в строке i коэффициент при x i (i = 1, 2, … , n ) по абсолютной величине мал, то производится поиск строки j , в которой коэффициент при x i будет наибольшим по абсолютной величине эта (j -я) строка прибавляется поэлементно к i - й строке. Затем все элементы i - й строки делятся на значение элемента x i Но, в отличие от метода Гаусса, после этого идет вычитание из каждой строки с номером j строки с номером i ,умноженной на a ji , но условие j > i заменено на другоеВ методе Гаусса-Жордана идет вычитание из каждой строки с номером j , причем j # i , строки с номером i ,умноженной на a ji . Т.е. производится обнуление коэффициентов как ниже, так и выше главной диагонали.

Достаточно подробный алгоритм решения СЛАУ методом Гаусса–Жордана приведен на рис. 2.2.

Пример 3 . Найти методом Гаусса-Жордана решение той же СЛАУ, которую мы уже решали методами Крамера и Гаусса.

Полностью аналогично методу Гаусса составим расширенную матрицу системы. Затем переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Дальше проведем вычитание из каждой строки матрицы (кроме первой) элементов первой строки, умноженных на коэффициент в первом столбце этой строки. Получим то же, что и в методе Гаусса

A * = .

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и (уже в отличие от метода Гаусса ) обнулим коэффициенты во втором столбце первой, третьей и четвертой строк матрицы. Получим