Марсоход секьюрити. Интересные факты о марсоходе Curiosity

Диаметр кратера - свыше 150 километров, в центре располагается конус осадочных пород высотой 5,5 километров - гора Шарпа. Желтой точкой отмечено место посадки марсохода Curiosity - Bradbury Landing (Посадка Брэдбери)


Космический аппарат опустился почти в центре заданного эллипса недалеко от Aeolis Mons (Эолида, гора Шарпа) - главной научной цели миссии.

Путь Curiosity в кратере Гейла (6.08.2012 посадка - 1.08.2018, Sol 2128)

На маршруте отмечены основные участки научных работ. Белая линия - южная граница эллипса посадки. За шесть лет марсоход проехал около 20 км и прислал свыше 400 тыс. фотоснимков Красной планеты

Curiosity собрал образцы "подземного" грунта на 16 участках

(по данным NASA/JPL)

Марсоход Curiosity на хребте Веры Рубин (Vera Rubin Ridge)

С высоты хорошо видны район выветренных холмов Murray Buttes, темные пески Bagnold Dunes и равнина Aeolis Palus (Эолидское болото) перед северным валом кратера Гейла. Высокий пик стенки кратера справа снимка находится на расстоянии около 31.5 км от марсохода, а его высота составляет ~ 1200 метров
Восемь основных задач Марсианской научной лаборатории:
1.Обнаружить и установить природу марсианских органических углеродных соединений.
2.Обнаружить вещества, необходимые для существования жизни: углерод, водород,
азот, кислород, фосфор, серу.
3.Обнаружить следы возможных биологических процессов.
4.Определить химический состав марсианской поверхности.
5.Установить процесс формирования марсианских камней и почвы.
6.Оценить процесс эволюции марсианской атмосферы в долгосрочном периоде.
7.Определить текущее состояние, распределение и круговорот воды и углекислого газа.
8.Установить спектр радиоактивного излучения поверхности Марса.

Свою главную задачу - поиск условий, благоприятных когда-либо для обитания микроорганизмов - Curiosity выполнил, исследовав высохшее русло древней марсианской реки в низине . Марсоход обнаружил веские доказательства того, что на этом месте было древнее озеро и оно было пригодно для поддержания простейших форм жизни.

Марсоход Curiosity в Yellowknife Bay

На горизонте возвышается величественная гора Шарпа ( Aeolis Mons, Эолида)

(NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer)

Другими важными результатами являются:
- Оценка естественного уровня радиации во время полета на Марс и на марсианской поверхности; эта оценка необходима для создания радиационной защиты пилотируемого полета на Марс

( )

- Измерение отношения тяжелых и легких изотопов химических элементов в марсианской атмосфере. Это исследование показало, что большая часть первичной атмосферы Марса рассеялась в космосе путем утраты легких атомов из верхних слоев газовой оболочки планеты ( )

Первое измерение возраста горных пород на Марсе и оценка времени их разрушения непосредственно на поверхности под действием космической радиации. Эта оценка позволит выяснить временные рамки водного прошлого планеты, а также темпы разрушения древней органики в камнях и почве Марса

Ц ентральная насыпь кратера Гейла - гора Шарпа - была сформирована из слоистых отложений осадочных пород в древнем озере на протяжении десятков миллионов лет

Марсоход обнаружил десятикратное увеличение содержания метана в атмосфере Красной планеты и отыскал органические молекулы в пробах грунта

Марсоход Curiosity на южной границе эллипса посадки 27 июня 2014 года, Sol 672

(Снимок камеры HiRISE орбитального зонда Mars Reconnaissance Orbiter)

С сентября 2014 года по март 2015 марсоход исследовал холмистую возвышенность "Pahrump Hills" (Парампские Холмы). По мнению планетологов, она представляет собой выход коренных пород центральной горы кратера Гейла и геологически не относится к поверхности его дна. С этого времени Curiosity приступил к изучению горы Шарпа.

Вид на возвышенность "Pahrump Hills"

Отмечены места бурения плиток "Confidence Hills" ,"Mojave 2" и "Telegraph Peak". На заднем плане слева видны склоны горы Шарпа, вверху - обнажения горных пород Whale Rock, Salsberry Peak и Newspaper Rock. Вскоре MSL отправился к более высоким склонам горы Шарпа через ложбину под названием "Artist"s Drive"

(NASA/JPL)

Камера высокого разрешения HiRISE орбитального зонда Mars Reconnaissance Orbiter увидела ровер 8 апреля 2015 года с высоты 299 км.

Север сверху. Изображение охватывает область шириной около 500 метров. Светлые участки рельефа - осадочные горные породы, темные - покрыты песком

(NASA/JPL-Caltech/Univ. of Arizona)

Ровер постоянно проводит съемку местности и некоторых объектов на ней, осуществляет мониторинг окружающей среды инструментами . Навигационные камеры присматриваются и к небу в поисках облаков.

Автопортрет в окрестностях ложбины Marias Pass

31 июля 2015 года Curiosity побурил каменистую плитку "Buckskin" на участке осадочных пород с необычно высоким содержанием кремнезема. Такой тип породы впервые встретился Марсианской научной лаборатории (MSL) за три года пребывания в кратере Гейла. Взяв пробу грунта, ровер продолжил путь к горе Шарпа

(NASA/JPL)

Марсоход Curiosity у бархана Namib Dune

Крутой склон подветренной стороны Namib Dune поднимается под углом 28 градусов на высоту 5 метров. На горизонте виден северо - западный вал кратера Гейла

Номинальный технический срок эксплуатации аппарата - два земных года - 23 июня 2014 года на Sol-668, но Curiosity находится в хорошем состоянии и успешно продолжает исследования марсианской поверхности

Слоистые холмы на склонах Эолиды, таящие геологическую историю марсианского кратера Гейла и следы изменений окружающей среды Красной планеты, - будущее место работы Curiosity

Итак, как же можно связаться с ровером, находящимся на Марсе? Вдумайтесь - даже когда Марс находится на наименьшем расстоянии от Земли, сигналу нужно преодолеть пятьдесят пять миллионов километров! Это действительно огромное расстояние. Но как же маленькому, одинокому марсоходу удается передавать свои научные данные и прекрасные полноцветные изображения так далеко и в таком количестве? В самом первом приближении, это выглядит примерно вот так (я очень старался, правда):

Итак, в процессе передачи информации участвуют, обычно, три ключевые «фигуры» - один из центров космической связи на Земле, один из искусственных спутников Марса, и собственно, сам марсоход. Давайте начнем со старушки Земли, и поговорим о центрах космической связи DSN (Deep Space Network).

Станции космической связи

Любая из космических миссий NASA рассчитана на то, что связь с космическим аппаратом должна быть возможна 24 часа в сутки (ну или по крайней мере всегда, когда она может быть возможна в принципе ). Поскольку, как нам известно, Земля довольно быстро вращается вокруг собственной оси, для обеспечения непрерывности сигнала необходимо несколько точек для приема/передачи данных. Именно такими точками и являются станции DSN. Они расположены на трех континентах и удалены друг от друга примерно на 120 градусов долготы, что позволяет им частично перекрывать зоны действия друг друга, и, благородя этому, «вести» космический аппарат 24 часа в сутки. Для этого, когда космический аппарат выходит из зоны действия одной из станций, его сигнал перебрасывается ну другую.

Один из комплексов DSN находится в США (Goldstone complex), второй - в Испании (около 60 километров от Мадрида), а третий - в Австралии (примерно в 40 километрах от Канберры).

Каждый из этих комплексов имеет собственный набор антенн, но по функциональности все три центра примерно равны. Сами антенны называются DSS (Deep Space Stations), и имеют собственную нумерацию - антенны в США имеют номера 1X-2X, антенны в Австралии - 3Х-4Х, а в Испании - 5Х-6Х. Так что, если вы услышите где-то «DSS53», то можете быть уверены, что речь идет об одной из испанских антенн.

Для связи с марсоходами чаще всего используется комплекс в Канберре, поэтому давайте поговорим о нем чуть подробнее.

У комплекса есть свой сайт , на котором можно найти довольно много интересной информации. Например, совсем скоро - 13 апреля этого года - исполнится 40 лет антенне DSS43.

Всего, на настоящий момент, станция в Канберре имеет три активные антенны: DSS-34 (диаметром 34 метра), DSS-43 (впечатляющие 70 метров) и DSS-45 (снова 34 метра). Разумеется, за годы работы центра были использованы и другие антенны, которые по разным причинам были выведены из эксплуатации. Например, самая первая антенна - DSS42 - была снята с использования в декабре 2000 года, а DSS33 (диаметром 11 метров) была списана в феврале 2002, после чего перевезена в Норвегию в 2009, чтобы продолжить свою работу уже в роли инструмента для изучения атмосферы.

Первая из упомянутых работающих антенн, DSS34 , была построена в 1997 году и стала первым представителем нового поколения этих устройств. Ее отличительной особенностью является то, что оборудование для приема/передачи и обработки сигнала находится не непосредственно на тарелке, а в помещении под ней. Это позволило значительно облегчить тарелку, а также дало возможность обслуживать оборудования не останавливая работу самой антенны. DSS34 является антенной-рефлектором, схема ее работы выглядит примерно так:

Как видите, под антенной располагается помещение, в котором и проводится вся обработка полученного сигнала. У реальной антенны, эта комната находится под землей, так что на фотографиях вы ее не увидите.


DSS34, кликабельно

Передача:

  • X-диапазон (7145-7190 МГц)
  • S-диапазон (2025-2120 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
  • Ka-диапазон (31.8-32.3 ГГц)
Точность позиционирования: Скорость поворота:
  • 2.0°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч

DSS43 (у которой скоро юбилей) представляет собой гораздо более старый экземпляр, построенный в 1969-1973 годах, и претерпевший модернизацию в 1987 году. DSS43 - это самая большая подвижная параболическая антенна в южном полушарии нашей планеты. Массивная конструкция весом более 3000 тонн поворачивается на масляной пленке толщиной около 0.17 миллиметра. Поверхность тарелки состоит из 1272 алюминиевых панелей, и имеет площадь 4180 квадратных метров.

DSS43, кликабельно

немного технических характеристик

Передача:

  • X-диапазон (7145-7190 МГц)
  • S-диапазон (2025-2120 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
  • L-диапазон (1626-1708 МГц)
  • K-диапазон (12.5 ГГц)
  • Ku-диапазон (18-26 ГГц)
Точность позиционирования:
  • в пределах 0.005° (точность наводки на точку небосвода)
  • в пределах 0.25мм (точность перемещения самой антенны)
Скорость поворота:
  • 0.25°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч
  • Максимальная расчетная - 160км/ч

DSS45 . Эта антенна была закончена в 1986 году, и предназначена изначально для связи с Voyager 2, изучавшим Уран. Она вращается на круглом основании диаметром в 19.6 метра, используя для этого 4 колеса, два из которых являются ведущими.

DSS45, кликабельно

немного технических характеристик

Передача:

  • X-диапазон (7145-7190 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
Точность позиционирования:
  • в пределах 0.015° (точность наводки на точку небосвода)
  • в пределах 0.25мм (точность перемещения самой антенны)
Скорость поворота:
  • 0.8°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч
  • Максимальная расчетная - 160км/ч

Если говорить о станции космической связи в целом, то можно выделить четыре основные задачи, которые она должна выполнять:
Телеметрия - получать, декодировать и обрабатывать данные телеметрии, поступающие с космических аппаратов. Обычно эти данные состоят из научной и инженерной информации, передаваемой по радиоканалу. Система телеметрии получает данные, следит за их изменениями и соответствием норме, и передает их в системы валидации или научные центры, занимающиеся их обработкой.
Слежение - система слежения должна обеспечивать возможность двусторонней коммуникации между Землей и космическим аппаратом, и проводить расчеты его местоположения и вектора скорости для правильного позиционирования терелки.
Управление - дает специалистам возможность передавать управляющие команды на космический аппарат.
Мониторинг и контроль - позволяю контролировать и управлять системами самой DSN

Стоит отметить, что австралийская станция обслуживает на сегодняшний день около 45 космических аппаратов, так что расписание времени ее работы четко регламентировано, и получить дополнительное время не так-то просто. У каждой из антенн также имеется техническая возможность обслуживать до двух разных аппаратов одновременно.

Итак, данные, которые должны быть переданы на ровер, присылают на станцию DSN, откуда они отправляются в свое недолгое (от 5 до 20 минут) космическое путешествие к Красной Планете. Давайте теперь перейдем к рассмотрению самого ровера. Какие средства связи имеются у него?

Curiosity

Curiosity оснащен тремя антеннами, каждая из которых может использоваться и для приема и для передачи информации. Это UHF-антенна, LGA и HGA. Все они расположены на «спине» ровера, в различных местах.


HGA - High Gain Antenna
MGA - Medium Gain Antenna
LGA - Low Gain Antenna
UHF - Ultra High Frequency
Поскольку аббревиатуры HGA, MGA и LGA уже имеют в себе слово antenna, я не буду приписывать к ним это слово повторно, в отличие от аббревиатуры UHF.


Нас интересуют RUHF, RLGA, и High Gain Antenna

UHF-антенна используется чаще всего. С ее помощью, ровер может передавать данные через спутники MRO и Odyssey (о которых мы поговорим дальше) на частоте около 400 мегагерц. Использование спутников для передачи сигнала является предпочтительным из-за того, что они находятся в поле зрения DSN-станций гораздо дольше, чем сам ровер, одиноко сидящий на поверхности Марса. К тому же, поскольку они значительно ближе к марсоходу, последнему нужно затрачивать меньше энергии для передачи данных. Скорость передачи может достигать 256кб/с для Odyssey и до 2 мбит/с для MRO. Бо льшая часть информации, приходящей от Curiosity, проходит именно через спутник MRO. Сама UHF-антенна находится в задней части ровера, и внешне выглядит как серый цилиндр.

Curiosity также имеет HGA, которую он может использовать для получения команд напрямую с Земли. Эта антенна подвижна (ее можно направить в сторону Земли), то есть для ее использования роверу не приходится менять свое местоположение, достаточно просто повернуть HGA в нужную сторону, а это позволяет сохранять энергию. HGA смонтирована примерно посередине с левого борта ровера, и представляет собой шестигранник диаметром около 30 сантиметров. HGA может передавать данные прямо на Землю со скоростью около 160 бит/сек на 34-метровые антенны, или со скоростью до 800 бит/сек на 70-метровые.

Наконец, третья антенна - это так называемая LGA.
Она посылает и принимает сигналы в любых направлениях. Работает LGA в X-диапазоне (7-8 ГГц). Тем не менее, мощность этой антенны довольно мала, а скорость передачи оставляет желать лучшего. Из-за этого она в основном используется для приема информации, а не для ее передачи.
На фото LGA - это белая башенка на переднем плане.
На заднем плане видна UHF-антенна.

Стоит отметить, что марсоход генерирует огромное количество научных данных, и не всегда все их удается отправить. Специалисты NASA устанавливают приоритеты важности: информация с наибольшим приоритетом будет передана в первую очередь, а информация с меньшим приоритетом будет ждать следующего коммуникационного окна. Иногда часть наименее важных данных и вовсе приходится удалять.

Спутники Odyssey и MRO

Итак, мы выясняли, что обычно для связи с Curiosity необходимо «промежуточное звено» в виде одного из спутников. Благодаря этому удается увеличить время, в течение которого связь с Curiosity вообще возможна, а также увеличить скорость передачи, так как более мощные антенны спутников способны передавать на Землю данные с гораздо большей скоростью.

Каждый из спутников имеет два коммуникационных окна с марсоходом в каждый сол. Обычно эти окна достаточно коротки - всего несколько минут. В случае крайней необходимости, Curiosity может также связаться со спутником Европейского Космического Агентства Mars Express Orbiter.

Mars Odyssey


Mars Odyssey
Спутник Mars Odyssey был запущен в 2001 году и предназначен изначально для изучения строения планеты и поиска минералов. Спутник имеет размеры 2,2х2,6х1,7 метра и массу более 700 килограмм. Высота его орбиты колеблется от 370 до 444 километров. Этот спутник активно использовался предыдущими марсоходами: около 85 процентов данных, полученных со Spirit и Opportunity, были транслированы именно через него. Odyssey может общаться с Curiosity в UHF-диапазоне. Что касается средств коммуникации, у него имеются HGA, MGA (medium gain antenna), LGA и UHF-антенна. В основном, для передачи данных на Землю используется HGA, имеющая диаметр 1.3 метра. Передача ведется на частоте 8406 МГц, а прием данных осуществляется на частоте 7155 МГц. Угловой размер луча составляет порядка двух градусов.


Расположение инструментов спутника

Коммуникации с роверами осуществляются с помощью UHF-антенны на частотах 437 МГц (передача) и 401 МГц (прием), скорость обмена данными может составлять 8, 32, 128 или 256 кб/сек.

Mars Reconnaissance Orbiter


MRO

В 2006 году к спутнику Odyssey присоединился MRO - Mars Reconnaissance Orbiter, который сегодня является основным собеседником Curiosity.
Однако, помимо работы связиста, сам MRO имеет внушительный арсенал научных приборов, и, что самое интересное, оборудован камерой HiRISE, которая представляет собой, по сути, телескоп-рефлектор. Находясь на высоте 300 километров, HiRISE может делать снимки с разрешением до 0.3 метра на пиксель (для сравнения, спутниковые снимки Земли обычно доступны с разрешением около 0.5 метра на пиксель). MRO может также создавать стереопары поверхности с точностью до умопомрачительных 0.25 метров. Я настоятельно рекомендую вам ознакомиться хотя бы с несколькими снимками, которые доступны, например, . Чего стоит, например, вот это изображение кратера Виктория (кликабельно, оригинал около 5 мегабайт):


Предлагаю самым внимательным найти на изображении ровер Opportunity ;)

ответ (кликабельно)

Обратите внимание на то, что большинство цветных снимков сделаны в расширенном диапазоне, так что если вы наткнетесь на снимок, на котором часть поверхности будет ярко сине-зеленоватого цвета, не спешите заниматься конспирологией;) Зато вы можете быть точно уверены, что на разных снимках одинаковые породы будут иметь одинаковый цвет. Однако, вернемся к системам связи.

MRO оборудован четырьмя антеннами, которые по назначению совпадают с антеннами марсохода - это UHF-антенна, HGA и две LGA. Основная используемая спутником антенна - HGA - имеет диаметр три метра, и работает в X-диапазоне. Именно она используется для передачи данных на Землю. HGA также оборудована 100-ваттным усилителем сигнала.


1 - HGA, 3 - UHF, 10 - LGA (обе LGA смонтированны прямо на HGA)

Curiosity и MRO общаются с помощью UHF-антенны, коммуникационное окно открывается дважды в сол, и продолжается примерно 6-9 минут. MRO выделяет 5Гб в день для данных, полученных с роверов, и хранит их до тех пор, пока не окажется в зоне видимости одной из станций DSN на Земле, после чего передает данные туда. Передача данных к марсоходу осуществляется по такому же принципу. На хранение команд, которые должны быть переданы на марсоход, выделяется 30 Мб/сол.

Станции DSN ведут MRO по 16 часов в сутки (остальные 8 часов спутник находится с обратной стороны Марса, и не может вести обмен данными, так как закрыт планетой), 10-11 из которых он передает данные на Землю. Обычно спутник в течение трех дней в неделю работает с 70-метровой антенной DSN, и дважды - с 34-метровой антенной (к сожалению непонятно чем он занимается в оставшиеся два дня, но вряд ли у него есть выходные). Скорость передачи может варьироваться от 0,5 до 4 мегабит в секунду - она уменьшается при отдалении Марса от Земли и увеличивается при сближении двух планет. Сейчас (на момент публикации статьи) Земля и Марс находятся почти на максимальном расстоянии друг от друга, так что скорость передачи скорее всего не очень велика.

NASA утверждает (на сайте спутника есть специальный виджет), что за все время работы MRO передал на Землю более 187 терабит (!) данных - это больше, чем все аппараты, посланные в космос до него, вместе взятые.

Заключение

Итак, подведем итоги. При передаче управляющих команд на марсоход, происходит следующее:
  • Специалисты JPL отправляют команды на одну из станций DSN.
  • Во время сеанса связи с одним из спутников (скорее всего, это будет MRO), станция DSN передает ему набор команд.
  • Спутник сохраняет данные во внутренней памяти, и ожидает следующего коммуникационного окна с марсоходом.
  • Когда марсоход оказывается в зоне доступа, спутник передает ему управляющие команды.

При передаче данных с марсохода на Землю, все это происходит в обратном порядке:

  • Ровер хранит свои научные данные во внутренней памяти и ожидает ближайшего коммуникационного окна со спутником.
  • Когда спутник оказывается доступен, ровер передает ему информацию.
  • Спутник получает данные, сохраняет их в своей памяти, и ожидает доступности одной из станций DSN
  • Когда станция DSN становится доступна, спутник отправляет ей полученные данные.
  • Наконец, после получения сигнала, станция DSN декодирует его, и отправляет полученные данные тем, для кого они предназначены.

Надеюсь, мне удалось более-менее кратко описать процесс связи с Curiosity. Вся эта информация (на английском языке; плюс огромная куча дополнительной, включая, например, довольно подробные технические отчеты о принципах работы каждого из спутников) доступна на различных сайтах JPL, ее очень легко найти, если знать, что именно вас интересует.

Пожалуйста, сообщайте о всех ошибках и опечатках в личку!

Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.

NASA запустила к Красной планете очередной марсоход. В отличие от проектов, связанных с этой планетой в нашей стране, американским исследователям удается довольно успешно осуществлять такие миссии. Напомним, российский аналог Curiosity – Фобос-Грунт потерпел фиаско из-за ошибки в программном обеспечении при выходе на околоземную орбиту.

Задачи миссии Curiosity. Curiosity это не просто марсоход. Проект осуществляется в рамках миссии Mars Science Laboratory и является платформой, на которой установлено множество научного оборудования, которое готовилось для решения нескольких задач.

Первая задача, которая стоит перед Curiosity, не оригинальна – поиск жизни на этой суровой планете. Для этого марсоходу нового поколения нужно будет обнаружить и изучить природу органических углеродных соединений. Найти такие вещества как водород, азот, фосфор, кислород, углерод и серу. Наличие таких веществ позволяет предположить о предпосылках зарождения жизни.

Кроме того, на Curiosity возлагают и другие задачи. Марсоход с помощью своего оборудования должен будет передать сведения о климате и геологии планеты, а так же провести подготовку к высадке человека.

Характеристики марсохода Curiosity. Curiosity имеет 3 метра в длину и 2,7 метра в ширину. Он оснащен шестью 51-см колесами. Каждое колесо работает от автономного электродвигателя. Передние и задние колеса помогут марсоходу повернуть в нужное направление. Благодаря особой конструкции и оптимальному диаметру, Curiosity способен преодолевать препятствие высотой 75 см и разгоняться до 90 метров в час.

Питание марсохода осуществляется за счет миниреактора. Заложенного в него плутония-238 хватит на 14 лет работы. От солнечных батарей решили отказаться из-за проблемы большого запыления атмосферы Марса.

Полет и посадка марсохода Curiosity. В качестве места посадки марсохода Curiosity был выбран кратер Гейла. Довольно ровное место, которое не должно преподнести проблемы.

На геостационарную орбиту марсоход вывела двухступенчатая ракета Atlantis-5 541. Откуда станция проследует до Марса. И тут начнется очень интересный момент – посадка Curiosity.

Атмосфера Марса довольна сложна. Ее плотные слои не позволяют посадочным двигателям корректировать этот процесс. Из-за чего была разработана довольно интересная технология, которая должна обойти эти трудности.

Во время входа в атмосферу Curiosity будет находиться в сложенном виде внутри специальной защитной капсулы. От высоких температур при вхождении в плотные слои атмосферы на большой скорости ее будет защищать специальное покрытие из углеродных волокон, пропитанных фенолформальдегидной смолой.

В плотной атмосфере Марса скорость аппарата снизится с 6 км/c до двукратной скорости звука. Сбрасываемые балласты откорректируют положение капсулы. Теплозащитное “покрывало” отстрелится и при скорости 470 м/c раскроется сверхзвуковой парашют.

При прохождении высоты 3,7 км над планетой, должна запуститься фотокамера, установленная в нижней части марсохода. Она снимет поверхность планеты, кадры высокой точности помогут избежать проблем с тем местом, куда Curiosity должен сесть.

Все это время парашют выполнял функцию тормоза, и на высоте 1,8 км над Красной планетой, марсоход отделяется от спускаемой установки, и дальнейшее снижение будет происходить при помощи платформы, которая снабжена посадочными двигателями.

Двигатели с переменной тягой корректируют положение платформы. В этот момент Curiosity должен успеть разложиться и подготовиться к посадке. Для того, чтоб этот процесс получился довольно плавным, была придумана еще одна технология – “летучий кран”.

“Летучий кран” это 3 троса, которые плавно опустят марсоход к поверхности планеты в то время как, платформа будет парить на высоте 7,5 метров.

Оборудование марсохода Curiosity. На марсоходе Curiosity установлено большое количество научного оборудования. Среди них есть и прибор, который разработали российские специалисты. Марсоход оснащен роботизированной рукой, которая довольно чувствительна. В нее вмонтированы бур, лопатка и другое оборудование, которое позволит собирать грунт и образцы пород.

На марсоходе установлено 10 приборов о некоторых из них, мы расскажем ниже.

MastCam – это камера, расположенная на высокой мачте над марсоходом. Она является глазами операторов, которые получая картинку на Земле, будут управлять аппаратом.

SAM – это масс-спектрометр, лазерный спектрометр и газовый хроматограф “в одном флаконе”, которые позволяют вести анализ проб грунта. Именно SAM должен найти органические соединения, азот, кислород и водород.

Роботизированная рука должна доставлять пробы в специальное место, на марсоходе, где их будет исследовать прибор SAM.

CheMin – еще один прибор для анализа пород. Он определяет химические и минеральные соединения.

CheCam – это самое интересное оборудование на борту марсохода Curiositi. Если говорить по-простому, то это лазер, которые способен растопить образцы грунта или скальных пород на расстоянии 9 метров от марсохода и исследовав пары, должен определить их структуру.

APXS – спектрометр который облучая образцы рентгеновским излучением и альфа-частицами сможет идентифицировать их. APXS располагается на роботизированной руке марсохода.

DAN – прибор разработанный нашими соотечественниками. Он способен определить наличие воды или льда даже на небольшой глубине под поверхностью планеты.

RAD – определит наличие радиоактивного излучения на планете.

REMS – чувствительная метеостанция на борту Curiosity.

Марсоход Curiosity это амбициозный проект человечества, который выведет нас на новый уровень изучения Марса. Посадка и изучение Красной планетой этим аппаратом, поможет ответить на два вопроса, которые давно не дают покоя человечеству: есть ли жизнь на Марсе и возможно ли колонизировать эту планету в ближайшем будущем.

Автопортрет «Кьюриосити»

Марсианская научная лаборатория (МНЛ) (Mars Science Laboratory , сокр. MSL ), «Марс сайенс лэборатори» - миссия НАСА , в ходе выполнения которой на был успешно доставлен и эксплуатируется третьего поколения «Кьюриосити» (Curiosity , - любопытство, любознательность ). Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Аппарат должен будет за несколько месяцев пройти от 5 до20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели.

Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. Предполагаемый срок службы на Марсе - один марсианский год (686 земных суток).

MSL - часть долговременной программы НАСА по исследованию Марса роботизированными зондами Mars Exploration Program. В проекте, помимо НАСА, участвуют также Калифорнийский технологический институт и Лаборатория реактивного движения. Руководитель проекта - Дуг Маккистион (Doug McCuistion), сотрудник НАСА из отдела изучения других планет.Полная стоимость проекта MSL составляет примерно 2,5 миллиарда долларов.

Специалисты американского космического агентства НАСА решили отправить марсоход в кратер Гейла. В огромной воронке хорошо просматриваются глубинные слои марсианского грунта, раскрывающие геологическую историю красной планеты.

Название «Кьюриосити» было выбрано в 2009 году среди вариантов, предложенных школьниками, путём голосования в сети Интернет. Среди других вариантов были Adventure («Приключение»), Amelia , Journey («Путешествие»),Perception («Восприятие»), Pursuit («Стремление»), Sunrise («Восход»), Vision («Ви́дение»), Wonder («Чудо»).

История

Космический аппарат в собранном виде.

В апреле 2004 года НАСА начало отбор предложений по оснащению нового марсохода научным оборудованием, и 14 декабря 2004 года было принято решение об отборе восьми предложений. В конце того же года началась разработка и испытания составных частей системы, включая разработку однокомпонентного двигателя производства компании Aerojet, который способен выдавать тягу в диапазоне от 15 до 100 % от максимальной при постоянном давлении наддува.

Создание всех компонентов марсохода было завершено к ноябрю 2008 года, причём большая часть инструментов и программного обеспечения MSL продолжало испытываться. Перерасход бюджета миссии составил около 400 миллионов долларов. В следующем месяце НАСА отложило запуск MSL на конец 2011 года из-за недостатка времени для испытаний.

С 23 по 29 марта 2009 года на сайте НАСА проводилось голосование по выбору названия для марсохода, на выбор было дано 9 слов. 27 мая 2009 года победителем было объявлено слово «Кьюриосити». Оно было предложено шестиклассницей из Канзаса Кларой Ма.

Марсоход был запущен ракетой “Атлас-5” с мыса Канаверал 26 ноября 2011 года. 11 января 2012 года был проведён специальный манёвр, который эксперты называют «самым важным» для марсохода. В результате совершённого манёвра аппарат взял курс, который привёл его в оптимальную точку для десантирования на поверхность Марса.

28 июля 2012 года была проведена четвёртая небольшая коррекция траектории, двигатели включили всего на шесть секунд. Операция прошла настолько успешно, что финальная коррекция, изначально намеченная на 3 августа, не потребовалась.

Посадка произошла успешно 6 августа 2012 года, в 05:17 UTC. Радиосигнал, сообщающий об успешной посадке марсохода на поверхность Марса, достиг в 05:32 UTC.

Задачи и цели миссии

29 июня 2010 года инженеры из Лаборатории Реактивного Движения собрали «Кьюриосити» в большом чистом помещении, в рамках подготовки к запуску марсохода в конце 2011 года.

MSL имеет четыре основных цели:

  • установить, существовали ли когда-либо условия, подходящие для существования жизни на Марсе;
  • получить подробные сведения о климате Марса;
  • получить подробные сведения о геологии Марса;
  • провести подготовку к высадке человека на Марсе.

Для достижения этих целей перед MSL поставлено шесть основных задач:

  • определить минералогический состав марсианских почв и припочвенных геологических материалов;
  • попытаться обнаружить следы возможного протекания биологических процессов - по элементам, являющимся основой жизни, какой она известна землянам: (углерод, водород, азот, кислород, фосфор, серу);
  • установить процессы, в которых формировались марсианские камни и почвы;
  • оценить процесс эволюции марсианской атмосферы в долгосрочном периоде;
  • определить текущее состояние, распределение и круговорот воды и углекислого газа;
  • установить спектр радиоактивного излучения поверхности Марса.

Также в рамках исследований измерялось воздействие космической радиации на компоненты во время перелёта к Марсу. Эти данные помогут оценить уровни радиации, ожидающие людей в пилотируемой экспедиции на Марс.

Состав

Перелётный
модуль
Модуль управляет траекторией Mars Science Laboratory во время полёта с Земли на Марс. Также включает в себя компоненты для поддержки связи во время полёта и регулирования температуры. Перед входом в атмосферу Марса происходит разделение перелетного модуля и спускаемого аппарата.
Тыльная часть
капсулы
Капсула необходима для спуска через атмосферу. Она защищает марсоход от влияния космического пространства и перегрузок во время входа в атмосферу Марса. В тыльной части находится контейнер для парашюта. Рядом с контейнером установлено несколько антенн связи.
«Небесный кран» После того, как теплозащитный экран и тыльная часть капсула выполнят свою задачу, они расстыковываются, тем самым освобождая путь для спуска аппарата и позволяя радару определить место посадки. После расстыковки кран обеспечивает точный и плавный спуск марсохода на поверхность Марса, который достигается за счёт использования реактивных двигателей и контролируется с помощью радиолокатора на марсоходе.
Марсоход «Кьюриосити» Марсоход под названием «Кьюриосити», содержит все научные приборы, а также важные системы связи и энергоснабжения. Во время полёта шасси складывается для экономии места.
Лобовая часть
капсулы с
теплозащитным экраном
Теплозащитный экран защищает марсоход от крайне высокой температуры, воздействующей на спускаемый аппарат при торможении в атмосфере Марса.
Спускаемый аппарат Масса спускаемого аппарата (изображён в сборе с перелётным модулем) составляет 3,3 тонны. Спускаемый аппарат служит для контролируемого безопасного снижения марсохода при торможении в марсианской атмосфере и мягкой посадки марсохода на поверхность.

Технология полёта и посадки

Перелётный модуль готов к испытанию. Обратите внимание на часть капсулы снизу, в этой части находится радиолокатор, а на самом верху - солнечные батареи.

Траекторию движения Mars Science Laboratory от Земли до Марса контролировал перелётный модуль, соединённый с капсулой. Силовым элементом конструкции перелётного модуля была кольцевая ферма диаметром 4 метра, из алюминиевого сплава, укреплённая несколькими стабилизирующими стойками. На поверхности перелётного модуля были установлены 12 панелей , подключённых к системе энергоснабжения. К концу полёта, перед входом капсулы в атмосферу Марса, они вырабатывали около 1 кВт электрической энергии с КПД порядка 28,5 %. Для проведения энергоемких операций были предусмотрены литий-ионные аккумуляторы. Кроме того, система электропитания перелётного модуля, батареи спускаемого модуля и энергосистема «Кьюриосити» имели взаимные соединения, что позволяло перенаправить потоки энергии в случае возникновения неисправностей.

Ориентация космического аппарата в пространстве определялась при помощи звёздного датчика и одного из двух солнечных датчиков. Звёздный датчик наблюдал за несколькими выбранными для навигации звёздами; солнечный датчик использовал в качестве опорной точки . Эта система была спроектирована с резервированием для повышения надёжности миссии. Для коррекции траектории применялись 8 двигателей, работающих на гидразине, запас которого содержался в двух сферических титановых баках.